ON THE EXPANSIONS OF REAL NUMBERS IN TWO INTEGER BASES

被引:0
作者
Bugeaud, Yann [1 ]
Kim, Dong Han [2 ]
机构
[1] Univ Strasbourg, CNRS, UMR 7501, IRMA, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] Dongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro,1 Gil, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
Combinatorics on words; Sturmian word; complexity; integer base expansion; continued fraction;
D O I
10.5802/aif.3134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let r and s be multiplicatively independent positive integers. We establish that the r-ary expansion and the s-ary expansion of an irrational real number, viewed as infinite words on {0, 1...., r - 1} and {0, 1,., s - 1}, respectively, cannot have simultaneously a low block complexity. In particular, they cannot be both Sturmian words.
引用
收藏
页码:2225 / 2235
页数:11
相关论文
共 9 条
[1]  
Allouche J.P., 2003, Automatic sequences: Theory, applications, generalizations
[2]  
[Anonymous], 2012, Cambridge Tracts in Mathematics
[3]  
Bugeaud Y., PREPRINT
[4]  
Bugeaud Y., 2004, CAMBRIDGE TRACTS MAT, V160
[5]   ON THE EXPANSIONS OF REAL NUMBERS IN TWO MULTIPLICATIVELY DEPENDENT BASES [J].
Bugeaud, Yann ;
Kim, Dong Han .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 95 (03) :373-383
[6]   On the expansions of a real number to several integer bases [J].
Bugeaud, Yann .
REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (04) :931-946
[7]  
Cassaigne J., 1998, DEV LANGUAGE THEORY, P211
[8]   Linear equations in variables which lie in a multiplicative group [J].
Evertse, JH ;
Schlickewei, HP ;
Schmidt, WM .
ANNALS OF MATHEMATICS, 2002, 155 (03) :807-836
[9]   Symbolic dynamics II Sturmian trajectories [J].
Morse, M ;
Hedlund, GA .
AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 :1-42