Metabolic engineering of yeast for production of fuels and chemicals

被引:226
作者
Nielsen, Jens [1 ,2 ]
Larsson, Christer [1 ]
van Maris, Antonius [3 ,4 ]
Pronk, Jack [3 ,4 ]
机构
[1] Chalmers Univ Technol, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden
[2] Sci Life Lab, SE-17165 Solna, Sweden
[3] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands
[4] Kluyver Ctr Genom Ind Fermentat, NL-2628 BC Delft, Netherlands
关键词
ACETIC-ACID TOLERANCE; SACCHAROMYCES-CEREVISIAE; ETHANOL-PRODUCTION; MICROBIAL-PRODUCTION; XYLOSE FERMENTATION; EXPRESSION; PRECURSOR; PATHWAY; GLUCOSE; OSMOADAPTATION;
D O I
10.1016/j.copbio.2013.03.023
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microbial production of fuels and chemicals from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. The yeast Saccharomyces cerevisiae offers many advantages as a platform cell factory for such applications. Already applied on a huge scale for bioethanol production, this yeast is easy to genetically engineer, its physiology, metabolism and genetics have been intensively studied and its robustness enables it to handle harsh industrial conditions. Introduction of novel pathways and optimization of its native cellular processes by metabolic engineering are rapidly expanding its range of cell-factory applications. Here we review recent scientific progress in metabolic engineering of S. cerevisiae for the production of bioethanol, advanced biofuels, and chemicals.
引用
收藏
页码:398 / 404
页数:7
相关论文
共 64 条
[1]   Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase [J].
An, Ming-Zhe ;
Tang, Yue-Qin ;
Mitsumasu, Kanako ;
Liu, Ze-Shen ;
Shigeru, Morimura ;
Kenji, Kida .
BIOTECHNOLOGY LETTERS, 2011, 33 (07) :1367-1374
[2]  
[Anonymous], 2011, Technology roadmap: Biofuels for transport
[3]   The two isoenzymes for yeast NAD(+)-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation [J].
Ansell, R ;
Granath, K ;
Hohmann, S ;
Thevelein, JM ;
Adler, L .
EMBO JOURNAL, 1997, 16 (09) :2179-2187
[4]   Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield [J].
Basso, Thiago O. ;
de Kok, Stefan ;
Dario, Marcelo ;
do Espirito-Santo, Julio Cezar A. ;
Mueller, Gabriela ;
Schloelg, Paulo S. ;
Silva, Carlos P. ;
Tonso, Aldo ;
Daran, Jean-Marc ;
Gombert, Andreas K. ;
van Maris, Antonius J. A. ;
Pronk, Jack T. ;
Stambuk, Boris U. .
METABOLIC ENGINEERING, 2011, 13 (06) :694-703
[5]   Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain [J].
Bellissimi, Eleonora ;
van Dijken, Johannes P. ;
Pronk, Jack T. ;
van Maris, Antonius J. A. .
FEMS YEAST RESEARCH, 2009, 9 (03) :358-364
[6]   CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae [J].
Benjaphokee, Suthee ;
Koedrith, Preeyaporn ;
Auesukaree, Choowong ;
Asvarak, Thipa ;
Sugiyama, Minetaka ;
Kaneko, Yoshinobu ;
Boonchird, Chuenchit ;
Harashima, Satoshi .
NEW BIOTECHNOLOGY, 2012, 29 (02) :166-176
[7]   Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways [J].
Bond-Watts, Brooks B. ;
Bellerose, Robert J. ;
Chang, Michelle C. Y. .
NATURE CHEMICAL BIOLOGY, 2011, 7 (04) :222-227
[8]   Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae [J].
Brat, Dawid ;
Weber, Christian ;
Lorenzen, Wolfram ;
Bode, Helge B. ;
Boles, Eckhard .
BIOTECHNOLOGY FOR BIOFUELS, 2012, 5
[9]   In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production [J].
Bro, C ;
Regenberg, B ;
Förster, J ;
Nielsen, J .
METABOLIC ENGINEERING, 2006, 8 (02) :102-111
[10]   The role of biofuels in the future energy supply [J].
Caspeta, Luis ;
Buijs, Nicolaas A. A. ;
Nielsen, Jens .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1077-1082