Spatiotemporal Satellite Image Fusion Through One-Pair Image Learning

被引:208
作者
Song, Huihui [1 ]
Huang, Bo [1 ]
机构
[1] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2013年 / 51卷 / 04期
关键词
High-pass modulation; high spatial resolution; high temporal resolution; sparse representation; spatiotemporal fusion; PAN-SHARPENING METHOD; REFLECTANCE FUSION; LANDSAT; RESOLUTION;
D O I
10.1109/TGRS.2012.2213095
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper proposes a novel spatiotemporal fusion model for generating images with high-spatial and high-temporal resolution (HSHT) through learning with only one pair of prior images. For this purpose, this method establishes correspondence between low-spatial-resolution but high-temporal-resolution (LSHT) data and high-spatial-resolution but low-temporal-resolution (HSLT) data through the superresolution of LSHT data and further fusion by using high-pass modulation. Specifically, this method is implemented in two stages. In the first stage, the spatial resolution of LSHT data on prior and prediction dates is improved simultaneously by means of sparse representation; in the second stage, the known HSLT and the superresolved LSHTs are fused via high-pass modulation to generate the HSHT data on the prediction date. Remarkably, this method forms a unified framework for blending remote sensing images with temporal reflectance changes, whether phenology change (e. g., seasonal change of vegetation) or land-cover-type change (e. g., conversion of farmland to built-up area) based on a two-layer spatiotemporal fusion strategy due to the large spatial resolution difference between HSLT and LSHT data. This method was tested on both a simulated data set and two actual data sets of Landsat Enhanced Thematic Mapper Plus-Moderate Resolution Imaging Spectroradiometer acquisitions. It was also compared with other well-known spatiotemporal fusion algorithms on two types of data: images primarily with phenology changes and images primarily with land-cover-type changes. Experimental results demonstrated that our method performed better in capturing surface reflectance changes on both types of images.
引用
收藏
页码:1883 / 1896
页数:14
相关论文
共 28 条
  • [1] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [2] [Anonymous], 2008, IGARSS 2008 2008 IEE
  • [3] Chen SSB, 2001, SIAM REV, V43, P129, DOI [10.1137/S003614450037906X, 10.1137/S1064827596304010]
  • [4] Hyperspectral Image Classification Using Dictionary-Based Sparse Representation
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10): : 3973 - 3985
  • [5] Adaptive greedy approximations
    Davis G.
    Mallat S.
    Avellaneda M.
    [J]. Constructive Approximation, 1997, 13 (1) : 57 - 98
  • [6] Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization
    Dong, Weisheng
    Zhang, Lei
    Shi, Guangming
    Wu, Xiaolin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (07) : 1838 - 1857
  • [7] On the Role of Sparse and Redundant Representations in Image Processing
    Elad, Michael
    Figueiredo, Mario A. T.
    Ma, Yi
    [J]. PROCEEDINGS OF THE IEEE, 2010, 98 (06) : 972 - 982
  • [8] On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance
    Gao, Feng
    Masek, Jeff
    Schwaller, Matt
    Hall, Forrest
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08): : 2207 - 2218
  • [9] Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm
    Gorodnitsky, IF
    Rao, BD
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (03) : 600 - 616
  • [10] A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS
    Hilker, Thomas
    Wulder, Michael A.
    Coops, Nicholas C.
    Linke, Julia
    McDermid, Greg
    Masek, Jeffrey G.
    Gao, Feng
    White, Joanne C.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 (08) : 1613 - 1627