Tunneling dynamics of two interacting one-dimensional particles

被引:25
作者
Gharashi, Seyed Ebrahim [1 ]
Blume, D. [1 ]
机构
[1] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 03期
基金
美国国家科学基金会;
关键词
CONFINEMENT; RESONANCES; GAS;
D O I
10.1103/PhysRevA.92.033629
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present one-dimensional simulation results for the cold-atom tunneling experiments by the Heidelberg group [Zurn et al., Phys. Rev. Lett. 108, 075303 (2012); 111, 175302 (2013)] on one or two Li-6 atoms confined by a potential that consists of an approximately harmonic optical trap plus a linear magnetic-field gradient. At the noninteracting particle level, we find that the Wentzel-Kramers-Brillouin approximation may not be used as a reliable tool to extract the trapping potential parameters from the experimentally measured tunneling data. We use our numerical calculations along with the experimental tunneling rates for the noninteracting system to reparametrize the trapping potential. The reparametrized trapping potentials serve as input for our simulations of two interacting particles. For two interacting (distinguishable) atoms on the upper branch, we reproduce the experimentally measured tunneling rates, which vary over several orders of magnitude, fairly well. For infinitely strong interaction strength, we compare the time dynamics with that of two identical fermions and discuss the implications of fermionization on the dynamics. For two attractively interacting atoms on the molecular branch, we find that single-particle tunneling dominates for weakly attractive interactions, while pair tunneling dominates for strongly attractive interactions. Our first set of calculations yields qualitative but not quantitative agreement with the experimentally measured tunneling rates. We obtain quantitative agreement with the experimentally measured tunneling rates if we allow for a weakened radial confinement.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Mixture of interacting supersymmetric spinless fermions and bosons in a one-dimensional trap
    Schlottmann, P.
    MODERN PHYSICS LETTERS B, 2016, 30 (25):
  • [22] Quantum dynamics of impurities in a one-dimensional Bose gas
    Catani, J.
    Lamporesi, G.
    Naik, D.
    Gring, M.
    Inguscio, M.
    Minardi, F.
    Kantian, A.
    Giamarchi, T.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [23] Quantum flutter of supersonic particles in one-dimensional quantum liquids
    Mathy, Charles J. M.
    Zvonarev, Mikhail B.
    Demler, Eugene
    NATURE PHYSICS, 2012, 8 (12) : 881 - 886
  • [24] Light scattering by arbitrary-shaped one-dimensional particles
    Negrete-Regagnon, P
    Méndez, ER
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2002, 13 (03) : 241 - 248
  • [25] Nanoscale stratification of optical excitation in self-interacting one-dimensional arrays
    Kaplan, A. E.
    Volkov, S. N.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [26] Three interacting atoms in a one-dimensional trap: a benchmark system for computational approaches
    D'Amico, Pino
    Rontani, Massimo
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (06)
  • [27] Mott transition for strongly interacting one-dimensional bosons in a shallow periodic potential
    Boeris, G.
    Gori, L.
    Hoogerland, M. D.
    Kumar, A.
    Lucioni, E.
    Tanzi, L.
    Inguscio, M.
    Giamarchi, T.
    D'Errico, C.
    Carleo, G.
    Modugno, G.
    Sanchez-Palencia, L.
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [28] From nonequilibrium quantum Brownian motion to impurity dynamics in one-dimensional quantum liquids
    Bonart, Julius
    Cugliandolo, Leticia F.
    PHYSICAL REVIEW A, 2012, 86 (02)
  • [29] Dynamics of a one-dimensional spinor Bose liquid: A phenomenological approach
    Kamenev, A.
    Glazman, L. I.
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [30] Fermionization of a strongly interacting Bose-Fermi mixture in a one-dimensional harmonic trap
    Fang, Bess
    Vignolo, Patrizia
    Miniatura, Christian
    Minguzzi, Anna
    PHYSICAL REVIEW A, 2009, 79 (02):