Noninvasive in vivo 3D bioprinting

被引:238
作者
Chen, Yuwen [1 ,2 ]
Zhang, Jiumeng [1 ,2 ]
Liu, Xuan [1 ,2 ]
Wang, Shuai [1 ,2 ]
Tao, Jie [1 ,2 ]
Huang, Yulan [1 ,2 ]
Wu, Wenbi [1 ,2 ]
Li, Yang [1 ,2 ]
Zhou, Kai [1 ,2 ]
Wei, Xiawei [1 ,2 ,3 ]
Chen, Shaochen [4 ]
Li, Xiang [5 ]
Xu, Xuewen [6 ]
Cardon, Ludwig [7 ]
Qian, Zhiyong [1 ,2 ]
Gou, Maling [1 ,2 ]
机构
[1] Sichuan Univ, West China Hosp, State Key Lab Biotherapy, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Hosp, Canc Ctr, Chengdu 610041, Peoples R China
[3] Sichuan Univ, West China Hosp, Natl Clin Res Ctr Geriatr, Lab Aging Res & Canc Drug Target,State Key Lab Bi, Chengdu 610041, Peoples R China
[4] Univ Calif San Diego, Dept Nanoengn, San Diego, CA 92103 USA
[5] Sichuan Univ, West China Hosp, Inst Urol, Dept Urol, Chengdu 610041, Peoples R China
[6] Sichuan Univ, West China Hosp, Dept Aesthet Plast & Burn Surg, Chengdu 610041, Peoples R China
[7] Univ Ghent, Ctr Polymer & Mat Technol, Dept Mat Text & Chem Engn, B-9052 Ghent, Belgium
基金
国家重点研发计划;
关键词
EAR-SHAPED CARTILAGE; UP-CONVERSION; NANOPARTICLES;
D O I
10.1126/sciadv.aba7406
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional (3D) printing technology has great potential in advancing clinical medicine. Currently, the in vivo application strategies for 3D-printed macroscale products are limited to surgical implantation or in situ 3D printing at the exposed trauma, both requiring exposure of the application site. Here, we show a digital near-infrared (NIR) photopolymerization (DNP)-based 3D printing technology that enables the noninvasive in vivo 3D bioprinting of tissue constructs. In this technology, the NIR is modulated into customized pattern by a digital micromirror device, and dynamically projected for spatially inducing the polymerization of monomer solutions. By ex vivo irradiation with the patterned NIR, the subcutaneously injected bioink can be noninvasively printed into customized tissue constructs in situ. Without surgery implantation, a personalized ear-like tissue constructs with chondrification and a muscle tissue repairable cell-laden conformal scaffold were obtained in vivo. This work provides a proof of concept of noninvasive in vivo 3D bioprinting.
引用
收藏
页数:10
相关论文
共 45 条
[1]  
Antaris AL, 2016, NAT MATER, V15, P235, DOI [10.1038/NMAT4476, 10.1038/nmat4476]
[2]   Versatile Synthetic Strategy for Coating Upconverting Nanoparticles with Polymer Shells through Localized Photopolymerization by Using the Particles as Internal Light Sources [J].
Beyazit, Selim ;
Ambrosini, Serena ;
Marchyk, Nataliya ;
Palo, Emilia ;
Kale, Vishal ;
Soukka, Tero ;
Bui, Bernadette Tse Sum ;
Haupt, Karsten .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (34) :8919-8923
[3]   High Performance Near-Infrared (NIR) Photoinitiating Systems Operating under Low Light Intensity and in the Presence of Oxygen [J].
Bonardi, A. H. ;
Dumur, F. ;
Grant, T. M. ;
Noirbent, G. ;
Gigmes, D. ;
Lessard, B. H. ;
Fouassier, J. -P. ;
Lalevee, J. .
MACROMOLECULES, 2018, 51 (04) :1314-1324
[4]   3D Printed Pericardium Hydrogels To Promote Wound Healing in Vascular Applications [J].
Bracaglia, Laura G. ;
Messina, Michael ;
Winston, Shira ;
Kuo, Che-Ying ;
Lerman, Max ;
Fisher, John P. .
BIOMACROMOLECULES, 2017, 18 (11) :3802-3811
[5]   Self-Assembled Wound Dressings Silence MMP-9 and Improve Diabetic Wound Healing In Vivo [J].
Castleberry, Steven A. ;
Almquist, Benjamin D. ;
Li, Wei ;
Reis, Tiago ;
Chow, John ;
Mayner, Sarah ;
Hammond, Paula T. .
ADVANCED MATERIALS, 2016, 28 (09) :1809-1817
[6]   Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics [J].
Chen, Guanying ;
Qju, Hailong ;
Prasad, Paras N. ;
Chen, Xiaoyuan .
CHEMICAL REVIEWS, 2014, 114 (10) :5161-5214
[7]   Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics [J].
Chen, Shuo ;
Weitemier, Adam Z. ;
Zeng, Xiao ;
He, Linmeng ;
Wang, Xiyu ;
Tao, Yanqiu ;
Huang, Arthur J. Y. ;
Hashimotodani, Yuki ;
Kano, Masanobu ;
Iwasaki, Hirohide ;
Parajuli, Laxmi Kumar ;
Okabe, Shigeo ;
Teh, Daniel B. Loong ;
All, Angelo H. ;
Tsutsui-Kimura, Iku ;
Tanaka, Kenji F. ;
Liu, Xiaogang ;
McHugh, Thomas J. .
SCIENCE, 2018, 359 (6376) :679-683
[8]   Printing and Prototyping of Tissues and Scaffolds [J].
Derby, Brian .
SCIENCE, 2012, 338 (6109) :921-926
[9]   Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility [J].
Fairbanks, Benjamin D. ;
Schwartz, Michael P. ;
Bowman, Christopher N. ;
Anseth, Kristi S. .
BIOMATERIALS, 2009, 30 (35) :6702-6707
[10]   Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications [J].
Farahani, Rouhollah D. ;
Dube, Martine ;
Therriault, Daniel .
ADVANCED MATERIALS, 2016, 28 (28) :5794-5821