Development of Web tools to predict axillary lymph node metastasis and pathological response to neoadjuvant chemotherapy in breast cancer patients

被引:7
作者
Sugimoto, Masahiro [1 ]
Takada, Masahiro [2 ]
Toi, Masakazu [2 ]
机构
[1] Keio Univ, Inst Adv Biosci, Tsuruoka, Yamagata 9970052, Japan
[2] Kyoto Univ, Grad Sch Med, Dept Breast Surg, Kyoto, Japan
关键词
Alternative decision tree; Breast cancer; Data mining; Lymph node metastasis; Neoadjuvant therapy; Nomogram; POSITIVE SENTINEL NODE; PREOPERATIVE CHEMOTHERAPY; DECISION TREE; NOMOGRAM; RISK; TRIAL;
D O I
10.5301/jbm.5000103
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Nomograms are a standard computational tool to predict the likelihood of an outcome using multiple available patient features. We have developed a more powerful data mining methodology, to predict axillary lymph node (AxLN) metastasis and response to neoadjuvant chemotherapy (NAC) in primary breast cancer patients. We developed websites to use these tools. The tools calculate the probability of AxLN metastasis (AxLN model) and pathological complete response to NAC (NAC model). As a calculation algorithm, we employed a decision tree-based prediction model known as the alternative decision tree (ADTree), which is an analog development of if-then type decision trees. An ensemble technique was used to combine multiple ADTree predictions, resulting in higher generalization abilities and robustness against missing values. The AxLN model was developed with training datasets (n=148) and test datasets (n=143), and validated using an independent cohort (n=174), yielding an area under the receiver operating characteristic curve (AUC) of 0.768. The NAC model was developed and validated with n=150 and n=173 datasets from a randomized controlled trial, yielding an AUC of 0.787. AxLN and NAC models require users to input up to 17 and 16 variables, respectively. These include pathological features, including human epidermal growth factor receptor 2 (HER2) status and imaging findings. Each input variable has an option of "unknown," to facilitate prediction for cases with missing values. The websites developed facilitate the use of these tools, and serve as a database for accumulating new datasets.
引用
收藏
页码:E372 / E379
页数:8
相关论文
共 23 条
[11]   International Multicenter Tool to Predict the Risk of Nonsentinel Node Metastases in Breast Cancer [J].
Meretoja, Tuomo J. ;
Leidenius, Marjut H. K. ;
Heikkila, Paivi S. ;
Boross, Gabor ;
Sejben, Istvan ;
Regitnig, Peter ;
Luschin-Ebengreuth, Gero ;
Zgajnar, Janez ;
Perhavec, Andraz ;
Gazic, Barbara ;
Lazar, Gyorgy ;
Takacs, Tibor ;
Voros, Andras ;
Saidan, Zuhair A. ;
Nadeem, Rana M. ;
Castellano, Isabella ;
Sapino, Anna ;
Bianchi, Simonetta ;
Vezzosi, Vania ;
Barranger, Emmanuel ;
Lousquy, Ruben ;
Arisio, Riccardo ;
Foschini, Maria Pia ;
Imoto, Shigeru ;
Kamma, Hiroshi ;
Tvedskov, Tove F. ;
Kroman, Niels ;
Jensen, Maj-Brit ;
Audisio, Riccardo A. ;
Cserni, Gabor .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2012, 104 (24) :1888-1896
[12]   Machine learning for science: State of the art and future prospects [J].
Mjolsness, E ;
DeCoste, D .
SCIENCE, 2001, 293 (5537) :2051-+
[13]   A model for predicting non-sentinel lymph node metastatic disease when the sentinel lymph node is positive [J].
Pal, A. ;
Provenzano, E. ;
Duffy, S. W. ;
Pinderl, S. E. ;
Purushotham, A. D. .
BRITISH JOURNAL OF SURGERY, 2008, 95 (03) :302-309
[14]   Nomograms to predict pathologic complete response and metastasis-free survival after preoperative chemotherapy for breast cancer [J].
Rouzier, R ;
Pusztai, L ;
Delaloge, S ;
Gonzalez-Angulo, AM ;
Andre, F ;
Hess, KR ;
Buzdar, AU ;
Garbay, JR ;
Spielmann, M ;
Mathieu, MC ;
Symmans, WF ;
Wagner, P ;
Atallah, D ;
Valero, V ;
Berry, DA ;
Hortobagyi, GN .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (33) :8331-8339
[15]   Development and validation of nomograms for predicting residual tumor size and the probability of successful conservative surgery with Neoadjuvant chemotherapy for breast cancer [J].
Rouzier, Roman ;
Pusztai, Lajos ;
Garbay, Jean-Remi ;
Delaloge, Suzette ;
Hunt, Kelly K. ;
Hortobagyi, Gabriel N. ;
Berry, Donald ;
Kuerer, Henry M. .
CANCER, 2006, 107 (07) :1459-1466
[16]   The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer [J].
Straver, Marieke E. ;
Glas, Annuska M. ;
Hannemann, Juliane ;
Wesseling, Jelle ;
van de Vijver, Marc J. ;
Rutgers, Emiel J. Th. ;
Peeters, Marie-Jeanne T. F. D. Vrancken ;
van Tinteren, Harm ;
van't Veer, Laura J. ;
Rodenhuis, Sjoerd .
BREAST CANCER RESEARCH AND TREATMENT, 2010, 119 (03) :551-558
[17]   Evaluation of a 30-Gene Paclitaxel, Fluorouracil, Doxorubicin, and Cyclophosphamide Chemotherapy Response Predictor in a Multicenter Randomized Trial in Breast Cancer [J].
Tabchy, Adel ;
Valero, Vicente ;
Vidaurre, Tatiana ;
Lluch, Ana ;
Gomez, Henry ;
Martin, Miguel ;
Qi, Yuan ;
Javier Barajas-Figueroa, Luis ;
Souchon, Eduardo ;
Coutant, Charles ;
Doimi, Franco D. ;
Ibrahim, Nuhad K. ;
Gong, Yun ;
Hortobagyi, Gabriel N. ;
Hess, Kenneth R. ;
Symmans, W. Fraser ;
Pusztai, Lajos .
CLINICAL CANCER RESEARCH, 2010, 16 (21) :5351-5361
[18]   Predictions of the pathological response to neoadjuvant chemotherapy in patients with primary breast cancer using a data mining technique [J].
Takada, M. ;
Sugimoto, M. ;
Ohno, S. ;
Kuroi, K. ;
Sato, N. ;
Bando, H. ;
Masuda, N. ;
Iwata, H. ;
Kondo, M. ;
Sasano, H. ;
Chow, L. W. C. ;
Inamoto, T. ;
Naito, Y. ;
Tomita, M. ;
Toi, M. .
BREAST CANCER RESEARCH AND TREATMENT, 2012, 134 (02) :661-670
[19]   Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model [J].
Takada, Masahiro ;
Sugimoto, Masahiro ;
Naito, Yasuhiro ;
Moon, Hyeong-Gon ;
Han, Wonshik ;
Noh, Dong-Young ;
Kondo, Masahide ;
Kuroi, Katsumasa ;
Sasano, Hironobu ;
Inamoto, Takashi ;
Tomita, Masaru ;
Toi, Masakazu .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2012, 12
[20]   Establishment of histological criteria for high-risk node-negative breast carcinoma for a multi-institutional randomized clinical trial of adjuvant therapy [J].
Tsuda, H ;
Akiyama, F ;
Kurosumi, M ;
Sakamoto, G ;
Watanabe, T .
JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 1998, 28 (08) :486-491