On Finite-Time Stochastic Stability and Stabilization of Markovian Jump Systems Subject to Partial Information on Transition Probabilities

被引:29
作者
Zuo, Zhiqiang [1 ]
Li, Hongchao [1 ]
Liu, Yi [1 ]
Wang, Yijing [1 ]
机构
[1] Tianjin Univ, Sch Elect Engn & Automat, Tianjin Key Lab Proc Measurement & Control, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Markovian jump systems; Finite-time stochastic stability; Partial information on transition probabilities; H-INFINITY CONTROL; LINEAR-SYSTEMS; DISCRETE;
D O I
10.1007/s00034-012-9420-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problems of finite-time stochastic stability and stabilization for a class of linear Markovian jump systems subject to partial information on transition probabilities are considered in this paper. By introducing the concept of finite-time stochastic stability for linear Markovian jump systems, a new method is proposed to ensure that the state trajectory remains in a bounded region of the state space in mean square sense over a pre-specified finite-time interval. Based on this stability result, the finite-time stochastic stabilization criterion is then given. Finally, two numerical examples are shown to illustrate the effectiveness of the proposed method.
引用
收藏
页码:1973 / 1983
页数:11
相关论文
共 24 条
[1]   Finite-time stabilization via dynamic output feedback [J].
Amato, F ;
Ariola, M ;
Cosentino, C .
AUTOMATICA, 2006, 42 (02) :337-342
[2]   Finite-time control of discrete-time linear systems [J].
Amato, F ;
Ariola, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) :724-729
[3]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[4]  
Bellman R., 1953, STABILITY THEORY DIF
[5]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[6]  
Boukas E. K., 2002, CONTROL ENGN SER BIR
[7]  
Boukas E.-K., 2007, Stochastic switching systems: analysis and design
[8]  
Cao YY, 2000, IEEE T AUTOMAT CONTR, V45, P77, DOI 10.1109/9.827358
[9]  
Chen JR, 2008, J SYST ENG ELECTRON, V19, P965, DOI 10.1016/S1004-4132(08)60183-8
[10]   Robust H2 control of continuous-time Markov jump linear systems [J].
Dong, Huxiang ;
Yang, Guang-Hong .
AUTOMATICA, 2008, 44 (05) :1431-1436