Molecular dynamics simulations of swift heavy ion induced defect recovery in SiC

被引:81
作者
Backman, M. [1 ,2 ,3 ]
Toulemonde, M. [4 ]
Pakarinen, O. H. [2 ,3 ]
Juslin, N. [5 ]
Djurabekova, F. [2 ,3 ]
Nordlund, K. [2 ,3 ]
Debelle, A. [6 ]
Weber, W. J. [1 ,7 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland
[3] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland
[4] Univ Caen, CIMAP CEA CNRS ENSICAEN, F-14070 Caen 5, France
[5] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA
[6] Univ Paris 11, CNRS, IN2P3, CSNSM, F-91405 Orsay, France
[7] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
关键词
Radiation damage; Molecular dynamics; Inelastic thermal spike; Swift heavy ion; Silicon carbide; THERMAL SPIKE MODEL; AMORPHOUS REGIONS; SEMICONDUCTORS; ACCUMULATION; RADIATION; SILICON;
D O I
10.1016/j.commatsci.2012.09.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Swift heavy ions induce a high density of electronic excitations that can cause the formation of amorphous ion tracks in insulators. No ion tracks have been observed in the semiconductor SiC, but recent experimental work suggests that irradiation damaged SiC can undergo defect recovery under swift heavy ion irradiation. It is believed that local heating of the lattice due to the electronic energy deposition can anneal, and thereby recover, some of the disordered structure. We simulate the local heating due to the ions by the inelastic thermal spike model and perform molecular dynamics simulations of different model damage states to study the defect recovery on an atomistic level. We find significant recovery of point defects and a disordered layer, as well as recrystallization at the amorphous-to-crystalline interface of an amorphous layer. The simulation results support the swift heavy ion annealing hypothesis. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:261 / 265
页数:5
相关论文
共 33 条
[1]  
[Anonymous], CRYSTALLIZATION PROC
[2]   Effects of electronic and nuclear interactions in SiC [J].
Audren, A. ;
Monnet, I. ;
Gosset, D. ;
Leconte, Y. ;
Portier, X. ;
Thome, L. ;
Garrido, F. ;
Benyagoub, A. ;
Levalois, M. ;
Herlin-Boime, N. ;
Reynaud, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2009, 267 (06) :976-979
[3]   Athermal crystallization induced by electronic excitations in ion-irradiated silicon carbide [J].
Benyagoub, A. ;
Audren, A. ;
Thome, L. ;
Garrido, F. .
APPLIED PHYSICS LETTERS, 2006, 89 (24)
[4]   Study of the damage produced in silicon carbide by high energy heavy ions [J].
Benyagoub, A. ;
Audren, A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2009, 267 (8-9) :1255-1258
[5]  
Berendsen H.J.C., 1984, J CHEM PHYS, V81
[6]   Molecular dynamics modeling of the thermal conductivity of irradiated SiC as a function of cascade overlap [J].
Crocombette, Jean-Paul ;
Dumazer, Guillaume ;
Hoang, Nguyen Quoc ;
Gao, Fei ;
Weber, William J. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (02)
[7]   Combined experimental and computational study of the recrystallization process induced by electronic interactions of swift heavy ions with silicon carbide crystals [J].
Debelle, A. ;
Backman, M. ;
Thome, L. ;
Weber, W. J. ;
Toulemonde, M. ;
Mylonas, S. ;
Boulle, A. ;
Pakarinen, O. H. ;
Juslin, N. ;
Djurabekova, F. ;
Nordlund, K. ;
Garrido, F. ;
Chaussende, D. .
PHYSICAL REVIEW B, 2012, 86 (10)
[8]   Including the effects of electronic stopping and electron-ion interactions in radiation damage simulations [J].
Duffy, D. M. ;
Rutherford, A. M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (01)
[9]   Molecular dynamics simulations of gas phase condensation of silicon carbide nanoparticles [J].
Erhart, P ;
Albe, K .
ADVANCED ENGINEERING MATERIALS, 2005, 7 (10) :937-945
[10]   Mechanism of electron-irradiation-induced recrystallization in Si [J].
Frantz, J ;
Tarus, J ;
Nordlund, K ;
Keinonen, J .
PHYSICAL REVIEW B, 2001, 64 (12)