3D Quantum Hall Effect and a Global Picture of Edge States in Weyl Semimetals

被引:49
作者
Li, Hailong [1 ]
Liu, Haiwen [2 ]
Jiang, Hua [3 ,4 ]
Xie, X. C. [1 ,5 ,6 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[2] Beijing Normal Univ, Ctr Adv Quantum Studies, Dept Phys, Beijing 100875, Peoples R China
[3] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[4] Soochow Univ, Inst Adv Study, Suzhou 215006, Peoples R China
[5] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[6] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE-STATES; DISCOVERY; TRANSPORT; PHASE;
D O I
10.1103/PhysRevLett.125.036602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the 3D quantum Hall effect in Weyl semimetals and elucidate a global picture of the edge states. The edge states hosting 3D quantum Hall effect are combinations of Fermi arcs and chiral Landau bands dispersing along the magnetic field direction. The Hall conductance, sigma(H)(xz) [see Fig. 4], shows quantized plateaus with the variance of the magnetic field when the Fermi level is at the Weyl node. However, the chiral Landau bands can change the spatial distribution of the edge states, especially under a tilted magnetic field, and the resulting edge states lead to distinctive Hall transport phenomena. A tilted magnetic field contributes an intrinsic value to sigma(H)(xz) and such an intrinsic value is determined by the tilting angle. between the magnetic field and the y axis [see Fig. 1(c)]. Particularly, even if the perpendicular magnetic field is fixed, sigma(H)(xz) will change its sign with an abrupt spatial shift of the edge states when theta exceeds a critical angle theta(c). Our work uncovers the novel edge-state nature of the 3D quantum Hall effect in Weyl semimetals.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Ideal Weyl semimetal with 3D spin-orbit coupled ultracold quantum gas
    Lu, Yue-Hui
    Wang, Bao-Zong
    Liu, Xiong-Jun
    SCIENCE BULLETIN, 2020, 65 (24) : 2080 - 2085
  • [32] Giant magnetoresistance effect due to the tunneling between quantum anomalous Hall edge states
    Xu, Yong
    Wang, Jun
    Liu, Jun-Feng
    Xu, Hu
    APPLIED PHYSICS LETTERS, 2021, 118 (22)
  • [33] Nonlinear Ballistic Response of Quantum Spin Hall Edge States
    Bhalla, Pankaj
    Deng, Ming-Xun
    Wang, Rui-Qiang
    Wang, Lan
    Culcer, Dimitrie
    PHYSICAL REVIEW LETTERS, 2021, 127 (20)
  • [34] Tunneling between Edge States in a Quantum Spin Hall System
    Strom, Anders
    Johannesson, Henrik
    PHYSICAL REVIEW LETTERS, 2009, 102 (09)
  • [35] Evolution of the quantum Hall bulk spectrum into chiral edge states
    Patlatiuk, T.
    Scheller, C. P.
    Hill, D.
    Tserkovnyak, Y.
    Barak, G.
    Yacoby, A.
    Pfeiffer, L. N.
    West, K. W.
    Zumbuhl, D. M.
    NATURE COMMUNICATIONS, 2018, 9
  • [36] Imaging the Conductance of Integer and Fractional Quantum Hall Edge States
    Pascher, Nikola
    Roessler, Clemens
    Ihn, Thomas
    Ensslin, Klaus
    Reichl, Christian
    Wegscheider, Werner
    PHYSICAL REVIEW X, 2014, 4 (01):
  • [37] Observation of chiral quantum-Hall edge states in graphene
    Ki, Dong-Keun
    Jo, Sanghyun
    Lee, Hu-Jong
    APPLIED PHYSICS LETTERS, 2009, 94 (16)
  • [38] Observation of quantum topological Hall effect in the Weyl semimetal candidate HgSe
    Lonchakov, A. T.
    Bobin, S. B.
    Deryushkin, V. V.
    Neverov, V. N.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (40)
  • [39] Synthesizing a ν=2/3 fractional quantum Hall effect edge state from counter-propagating ν=1 and ν=1/3 states
    Cohen, Yonatan
    Ronen, Yuval
    Yang, Wenmin
    Banitt, Daniel
    Park, Jinhong
    Heiblum, Moty
    Mirlin, Alexander D.
    Gefen, Yuval
    Umansky, Vladimir
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [40] Separately contacted edge states at high imbalance in the integer and fractional quantum Hall effect regime
    Deviatov, E. V.
    Lorke, A.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (02): : 366 - 377