3D Quantum Hall Effect and a Global Picture of Edge States in Weyl Semimetals

被引:49
作者
Li, Hailong [1 ]
Liu, Haiwen [2 ]
Jiang, Hua [3 ,4 ]
Xie, X. C. [1 ,5 ,6 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[2] Beijing Normal Univ, Ctr Adv Quantum Studies, Dept Phys, Beijing 100875, Peoples R China
[3] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[4] Soochow Univ, Inst Adv Study, Suzhou 215006, Peoples R China
[5] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[6] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE-STATES; DISCOVERY; TRANSPORT; PHASE;
D O I
10.1103/PhysRevLett.125.036602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the 3D quantum Hall effect in Weyl semimetals and elucidate a global picture of the edge states. The edge states hosting 3D quantum Hall effect are combinations of Fermi arcs and chiral Landau bands dispersing along the magnetic field direction. The Hall conductance, sigma(H)(xz) [see Fig. 4], shows quantized plateaus with the variance of the magnetic field when the Fermi level is at the Weyl node. However, the chiral Landau bands can change the spatial distribution of the edge states, especially under a tilted magnetic field, and the resulting edge states lead to distinctive Hall transport phenomena. A tilted magnetic field contributes an intrinsic value to sigma(H)(xz) and such an intrinsic value is determined by the tilting angle. between the magnetic field and the y axis [see Fig. 1(c)]. Particularly, even if the perpendicular magnetic field is fixed, sigma(H)(xz) will change its sign with an abrupt spatial shift of the edge states when theta exceeds a critical angle theta(c). Our work uncovers the novel edge-state nature of the 3D quantum Hall effect in Weyl semimetals.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Quantum-limit Hall effect with large carrier density in topological semimetals
    Yang, Guang
    Zhang, Yi
    PHYSICAL REVIEW B, 2021, 103 (24)
  • [22] Edge reconstruction in fractional quantum Hall states
    Sabo, Ron
    Gurman, Itamar
    Rosenblatt, Amir
    Lafont, Fabien
    Banitt, Daniel
    Park, Jinhong
    Heiblum, Moty
    Gefen, Yuval
    Umansky, Vladimir
    Mahalu, Diana
    NATURE PHYSICS, 2017, 13 (05) : 491 - 496
  • [23] Quantum Hall effect based on Weyl orbits in Cd3As2
    Zhang, Cheng
    Zhang, Yi
    Yuan, Xiang
    Lu, Shiheng
    Zhang, Jinglei
    Narayan, Awadhesh
    Liu, Yanwen
    Zhang, Huiqin
    Ni, Zhuoliang
    Liu, Ran
    Choi, Eun Sang
    Suslov, Alexey
    Sanvito, Stefano
    Pi, Li
    Lu, Hai-Zhou
    Potter, Andrew C.
    Xiu, Faxian
    NATURE, 2019, 565 (7739) : 331 - +
  • [24] Resonance states and beating pattern induced by quantum impurity scattering in Weyl/Dirac semimetals
    Zheng, Shi-Han
    Wang, Rui-Qiang
    Zhong, Min
    Duan, Hou-Jian
    SCIENTIFIC REPORTS, 2016, 6
  • [25] Strong-coupling phases of 3D Dirac and Weyl semimetals. A renormalization group approach
    Gonzalez, J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10):
  • [26] Suppressed compressibility of quantum Hall effect edge states in epitaxial graphene on SiC
    Slizovskiy, Sergey
    Fal'ko, Vladimir I.
    PHYSICAL REVIEW B, 2018, 97 (07)
  • [27] Theory for the Charge-Density-Wave Mechanism of 3D Quantum Hall Effect
    Qin, Fang
    Li, Shuai
    Du, Z. Z.
    Wang, C. M.
    Zhang, Wenqing
    Yu, Dapeng
    Lu, Hai-Zhou
    Xie, X. C.
    PHYSICAL REVIEW LETTERS, 2020, 125 (20)
  • [28] Probing domain wall dynamics in magnetic Weyl semimetals via the nonlinear anomalous Hall effect
    Heidari, Shiva
    Asgari, Reza
    Culcer, Dimitrie
    PHYSICAL REVIEW B, 2023, 107 (21)
  • [29] Optimal Thermoelectricity with Quantum Spin Hall Edge States
    Gresta, Daniel
    Real, Mariano
    Arrachea, Liliana
    PHYSICAL REVIEW LETTERS, 2019, 123 (18)
  • [30] Equilibration of quantum Hall edge states by an Ohmic contact
    Slobodeniuk, Artur O.
    Levkivskyi, Ivan P.
    Sukhorukov, Eugene V.
    PHYSICAL REVIEW B, 2013, 88 (16)