A Graph-Neural-Network-Based Social Network Recommendation Algorithm Using High-Order Neighbor Information

被引:11
|
作者
Yu, Yonghong [1 ]
Qian, Weiwen [1 ]
Zhang, Li [2 ]
Gao, Rong [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Tongda, Yangzhou 225127, Jiangsu, Peoples R China
[2] Royal Holloway Univ London, Dept Comp Sci, Egham TW20 0EX, Surrey, England
[3] Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Peoples R China
关键词
recommendation algorithm; graph neural network; high-order neighbors; social network;
D O I
10.3390/s22197122
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Social-network-based recommendation algorithms leverage rich social network information to alleviate the problem of data sparsity and boost the recommendation performance. However, traditional social-network-based recommendation algorithms ignore high-order collaborative signals or only consider the first-order collaborative signal when learning users' and items' latent representations, resulting in suboptimal recommendation performance. In this paper, we propose a graph neural network (GNN)-based social recommendation model that utilizes the GNN framework to capture high-order collaborative signals in the process of learning the latent representations of users and items. Specifically, we formulate the representations of entities, i.e., users and items, by stacking multiple embedding propagation layers to recursively aggregate multi-hop neighborhood information on both the user-item interaction graph and the social network graph. Hence, the collaborative signals hidden in both the user-item interaction graph and the social network graph are explicitly injected into the final representations of entities. Moreover, we ease the training process of the proposed GNN-based social recommendation model and alleviate overfitting by adopting a lightweight GNN framework that only retains the neighborhood aggregation component and abandons the feature transformation and nonlinear activation components. The experimental results on two real-world datasets show that our proposed GNN-based social recommendation method outperforms the state-of-the-art recommendation algorithms.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] PRGNN: Modeling high-order proximity with relational graph neural network for knowledge graph completion
    Zhu, Danhao
    NEUROCOMPUTING, 2024, 594
  • [32] LegalGNN: Legal Information Enhanced Graph Neural Network for Recommendation
    Yang, Jun
    Ma, Weizhi
    Zhang, Min
    Zhou, Xin
    Liu, Yiqun
    Ma, Shaoping
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2022, 40 (02)
  • [33] SMIGNN: social recommendation with multi-intention knowledge distillation based on graph neural network
    Niu, Yong
    Xing, Xing
    Jia, Zhichun
    Xin, Mindong
    Xing, Junye
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (05): : 6965 - 6988
  • [34] SMIGNN: social recommendation with multi-intention knowledge distillation based on graph neural network
    Yong Niu
    Xing Xing
    Zhichun Jia
    Mindong Xin
    Junye Xing
    The Journal of Supercomputing, 2024, 80 : 6965 - 6988
  • [35] CapsRec: A Capsule Graph Neural Network Model for Social Recommendation
    Liu, Peizhen
    Yu, Wen
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 359 - 363
  • [36] Course Recommendation Based on Graph Convolutional Neural Network
    An Cong Tran
    Duc-Thien Tran
    Nguyen Thai-Nghe
    Tran Thanh Dien
    Hai Thanh Nguyen
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE. THEORY AND APPLICATIONS, IEA/AIE 2023, PT I, 2023, 13925 : 235 - 240
  • [37] Hybrid-Order Gated Graph Neural Network for Session-Based Recommendation
    Chen, Yan-Hui
    Huang, Ling
    Wang, Chang-Dong
    Lai, Jian-Huang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 1458 - 1467
  • [38] High-Order Structure Enhanced Graph Clustering Network
    Zhang, Yangfan
    Guo, Bing
    PRICAI 2024: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2025, 15281 : 328 - 340
  • [39] A Graph Neural Network Social Recommendation Algorithm Integrating the Multi-Head Attention Mechanism
    Yi, Huawei
    Liu, Jingtong
    Xu, Wenqian
    Li, Xiaohui
    Qian, Huihui
    ELECTRONICS, 2023, 12 (06)
  • [40] Enhanced Graph Neural Network for Session-Based Recommendation with Static and Dynamic Information
    Chao, Yongxin
    Zheng, Kai
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2024 WORKSHOPS, RAFDA AND IWTA, 2024, 14658 : 70 - 81