Slim Semimodular Lattices. I. A Visual Approach

被引:30
作者
Czedli, Gabor [1 ]
Schmidt, E. Tamas [2 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
[2] Budapest Univ Technol & Econ, Math Inst, H-1521 Budapest, Hungary
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 2012年 / 29卷 / 03期
关键词
Semimodular lattice; Slim lattice; Planar lattice; Join-homomorphism; Contour; Fork; Corner;
D O I
10.1007/s11083-011-9215-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite lattice L is called slim if no three join-irreducible elements of L form an antichain. Slim lattices are planar. After exploring some elementary properties of slim lattices and slim semimodular lattices, we give two visual structure theorems for slim semimodular lattices.
引用
收藏
页码:481 / 497
页数:17
相关论文
共 11 条
[1]   HOW TO DERIVE FINITE SEMIMODULAR LATTICES FROM DISTRIBUTIVE LATTICES? [J].
Czedli, G. ;
Schmidt, E. T. .
ACTA MATHEMATICA HUNGARICA, 2008, 121 (03) :277-282
[2]  
Czedli G., 2011, ALGEBRA UNI IN PRESS
[3]  
CZEDLI G., 2010, CONTRIBUTIONS GEN AL, V19, P45
[4]   A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS [J].
DILWORTH, RP .
ANNALS OF MATHEMATICS, 1950, 51 (01) :161-166
[5]   A new look at the Jordan-Holder theorem for semimodular lattices [J].
Graetzer, G. ;
Nation, J. B. .
ALGEBRA UNIVERSALIS, 2010, 64 (3-4) :309-311
[6]  
Grätzer G, 2009, ACTA SCI MATH, V75, P29
[7]  
Grätzer G, 2010, ACTA SCI MATH, V76, P3
[8]  
Gratzer G., 1998, General Lattice Theory
[9]  
Grätzer G, 2007, ACTA SCI MATH, V73, P445
[10]   PLANAR LATTICES [J].
KELLY, D ;
RIVAL, I .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1975, 27 (03) :636-665