Shockley model description of surface states in topological insulators

被引:56
作者
Pershoguba, Sergey S. [1 ]
Yakovenko, Victor M. [1 ]
机构
[1] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 07期
关键词
BANDS;
D O I
10.1103/PhysRevB.86.075304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface states in topological insulators can be understood based on the well-known Shockley model, a one-dimensional tight-binding model with two atoms per elementary cell, connected via alternating tunneling amplitudes. We generalize the one-dimensional model to the three-dimensional case representing a sequence of layers connected via tunneling amplitudes t, which depend on the in-plane momentum p = (p(x), p(y)). The Hamiltonian of the model is a 2 x 2 matrix with the off-diagonal element t (k, p) depending also on the out-of-plane momentum k. We show that the existence of the surface states depends on the complex function t (k, p). The surface states exist for those in-plane momenta p where the winding number of the function t (k, p) is nonzero when k is changed from 0 to 2 pi. The sign of the winding number determines the sublattice on which the surface states are localized. The equation t (k, p) = 0 defines a vortex line in the three-dimensional momentum space. Projection of the vortex line onto the space of the two-dimensional momentum p encircles the domain where the surface states exist. We illustrate how this approach works for a well-known model of a topological insulator on the diamond lattice. We find that different configurations of the vortex lines are responsible for the "weak" and "strong" topological insulator phases. A topological transition occurs when the vortex lines reconnect from spiral to circular form. We apply the Shockley model to Bi2Se3 and discuss applicability of a continuous approximation for the description of the surface states. We conclude that the tight-binding model gives a better description of the surface states.
引用
收藏
页数:15
相关论文
共 47 条
[1]   Bulk Fermi surface coexistence with Dirac surface state in Bi2Se3: A comparison of photoemission and Shubnikov-de Haas measurements [J].
Analytis, James G. ;
Chu, Jiun-Haw ;
Chen, Yulin ;
Corredor, Felipe ;
McDonald, Ross D. ;
Shen, Z. X. ;
Fisher, Ian R. .
PHYSICAL REVIEW B, 2010, 81 (20)
[2]   Stacking faults, bound states, and quantum Hall plateaus in crystalline graphite [J].
Arovas, Daniel P. ;
Guinea, F. .
PHYSICAL REVIEW B, 2008, 78 (24)
[3]  
Beenakker C. W. J., ARXIV11121950
[4]   Topologically stable gapless phases of time-reversal-invariant superconductors [J].
Beri, B. .
PHYSICAL REVIEW B, 2010, 81 (13)
[5]   Dynamical delocalization of Majorana edge states by sweeping across a quantum critical point [J].
Bermudez, A. ;
Amico, L. ;
Martin-Delgado, M. A. .
NEW JOURNAL OF PHYSICS, 2010, 12
[6]   Topology-Induced Anomalous Defect Production by Crossing a Quantum Critical Point [J].
Bermudez, A. ;
Patane, D. ;
Amico, L. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[7]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[8]   Quantum spin hall effect [J].
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]   SURFACE-STATES AND CHIRAL-SYMMETRY ON THE LATTICE [J].
CREUTZ, M ;
HORVATH, I .
PHYSICAL REVIEW D, 1994, 50 (03) :2297-2308