Robust economic optimization of process design under uncertainty

被引:11
作者
Kang, JS [1 ]
Suh, MH [1 ]
Lee, TY [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea
关键词
robustness measures; robust partial mean model; robust worst-case model; Pareto optimality; target value; process design;
D O I
10.1080/03052150310001627338
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, ranges of model parameters are analyzed for robustness measures. In particular, the properties of partial mean and worst-case cost in robust optimization are investigated. The robust optimization models are considered as multiobjective problems having two objectives, the expected performance (i.e. expected cost) and a robustness measure (Suh, M. and Lee, T. ( 2001) Robust optimization method for the economic term in chemical process design and planning. Industrial & Engineering Chemical Research, 40, 5950 - 5959). The robust partial mean model is defined with objectives of expected value and partial mean. The robust worst-case model is defined with the objective of expected value and worst-case. They are proved to guarantee Pareto optimality, which should be satisfied for multiobjective optimization problems. A graphical representation of the meaningful parameter ranges is clearly defined with mathematical proofs. The robustness of the solutions is discussed, based on the analysis of the ranges of the parameters. Three meaningful ranges of the parameters are investigated to choose a proper target value for the robust partial mean model. The worst-case value obtained from the worst-case analysis is recommended as the most effective target value, in order to obtain the optimal solution in a tradeoff between robustness and optimality. The proposed analysis in this study is validated with examples in chemical process design problems.
引用
收藏
页码:51 / 75
页数:25
相关论文
共 21 条
[1]   Robust process planning under uncertainty [J].
Ahmed, S ;
Sahinidis, NV .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (05) :1883-1892
[2]   Robust investment model for long-range capacity expansion of chemical processing networks under uncertain demand forecast scenarios [J].
Bok, JK ;
Lee, H ;
Park, S .
COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 (7-8) :1037-1049
[3]  
Brooke A., 1988, GAMS USERS GUIDE
[4]  
Chankong V., 1983, Multiobjective Decision Making: Theory and Methodology
[5]   A SCENARIO APPROACH TO CAPACITY PLANNING [J].
EPPEN, GD ;
MARTIN, RK ;
SCHRAGE, L .
OPERATIONS RESEARCH, 1989, 37 (04) :517-527
[6]  
FISHBURN PC, 1977, AM ECON REV, V67, P116
[7]   An integrated framework for robust and flexible process systems [J].
Georgiadis, MC ;
Pistikopoulos, EN .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999, 38 (01) :133-143
[8]   OPTIMIZATION STRATEGIES FOR FLEXIBLE CHEMICAL PROCESSES [J].
GROSSMANN, IE ;
HALEMANE, KP ;
SWANEY, RE .
COMPUTERS & CHEMICAL ENGINEERING, 1983, 7 (04) :439-462
[9]  
*IBM, 1991, OSL OPT SUBR LIB GUI
[10]   ROBUST OPTIMIZATION FOR POWER-SYSTEMS CAPACITY EXPANSION UNDER UNCERTAINTY [J].
MALCOLM, SA ;
ZENIOS, SA .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1994, 45 (09) :1040-1049