Lyapunov conditions for finite-time stability of time-varying time-delay systems

被引:172
作者
Li, Xiaodi [1 ,2 ]
Yang, Xueyan [1 ]
Song, Shiji [3 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
[2] Shandong Normal Univ, Ctr Control & Engn Computat, Jinan 250014, Shandong, Peoples R China
[3] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite-time stability; Finite-time contractive stability; Lyapunov-Razumikhin method; Time-varying systems; Delay; ASYMPTOTIC STABILITY; STABILIZATION; BOUNDEDNESS; INEQUALITY;
D O I
10.1016/j.automatica.2019.01.031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop the Lyapunov-Razumikhin method to finite-time stability (FTS) and finitetime contractive stability (FTCS) of time-delay systems. Several Lyapunov-based sufficient conditions for establishing these FTS properties are obtained. Then the theoretical results are applied to FTS and FTCS for a class of linear time-varying (LTV) time-delay system. The efficiency of the proposed criteria is illustrated by three numerical examples, where a stabilizing memoryless controller for FTCS of a second-order LTV system with time delay is proposed. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:135 / 140
页数:6
相关论文
共 27 条
[1]   Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems [J].
Amato, F. ;
De Tommasi, G. ;
Pironti, A. .
AUTOMATICA, 2013, 49 (08) :2546-2550
[2]  
Amato F, 2014, LECT NOTES CONTROL I
[3]   Finite-time control of discrete-time linear systems: Analysis and design conditions [J].
Amato, Francesco ;
Ariola, Marco ;
Cosentino, Carlo .
AUTOMATICA, 2010, 46 (05) :919-924
[4]   Sufficient Conditions for Finite-Time Stability of Impulsive Dynamical Systems [J].
Ambrosino, Roberto ;
Calabrese, Francesco ;
Cosentino, Carlo ;
De Tommasi, Gianmaria .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) :861-865
[5]   Continuous finite-time stabilization of the translational and rotational double integrators [J].
Bhat, SP ;
Bernstein, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :678-682
[6]   Finite-time stochastic contractive boundedness of Markovian jump systems subject to input constraints [J].
Cheng, Jun ;
Xiang, Huili ;
Wang, Hailing ;
Liu, Zhijun ;
Hou, Liyuan .
ISA TRANSACTIONS, 2016, 60 :74-81
[7]  
Dorato P., 1961, SHORT TIME STABILITY, P83
[8]  
Du HB, 2010, KYBERNETIKA, V46, P870
[9]   Finite-Time Stabilization of Linear Time-Varying Continuous Systems [J].
Garcia, Germain ;
Tarbouriech, Sophie ;
Bernussou, Jacques .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) :364-369
[10]  
Gu Keqin, 2003, CONTROL ENGN SER BIR