EFFECTS OF WHITE NOISE IN MULTISTABLE DYNAMICS

被引:4
作者
Chen, Xinfu [1 ,2 ]
Caginalp, Carey [3 ]
Hao, Jianghao [1 ]
Zhang, Yajing [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2013年 / 18卷 / 07期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Bistable; multistable; white noise; stochastic differential equation; invariant measure; Fokker-Planck/Kolmogorov equation; BISTABILITY DRIVEN; INVARIANT-MEASURES; HARMONIC NOISE; EQUATIONS; LIMIT; INTERFACE; MOTION;
D O I
10.3934/dcdsb.2013.18.1805
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the invariant measure of multistable dynamics under the influence of white noise. We show that the invariant measure exists and in the limit of vanishing white noise, the invariant measure approaches a Dirac type measure concentrated at the most stable equilibria if fluctuations are uniform; however, a lesser stable equilibrium may be selected by the fluctuation if its ability to fluctuate is sufficiently smaller than other stable equilibria. Certain related mathematical issues are also addressed.
引用
收藏
页码:1805 / 1825
页数:21
相关论文
共 32 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]  
[Anonymous], 1983, HDB STOCHASTIC METHO
[3]   On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations [J].
Arnold, A ;
Markowich, P ;
Toscani, G ;
Unterreiter, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :43-100
[4]  
BRASSESCO S, 1995, ANN I H POINCARE-PR, V31, P81
[5]   PHASE-TRANSITIONS INDUCED BY WHITE NOISE IN BISTABLE OPTICAL SYSTEMS [J].
BULSARA, AR ;
SCHIEVE, WC ;
GRAGG, RF .
PHYSICS LETTERS A, 1978, 68 (3-4) :294-296
[6]  
Chang HH, 2006, BMC CELL BIOL, V7, DOI 10.1186/1471-2121-7-11
[7]   Fokker-Planck Equations for a Free Energy Functional or Markov Process on a Graph [J].
Chow, Shui-Nee ;
Huang, Wen ;
Li, Yao ;
Zhou, Haomin .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (03) :969-1008
[8]  
Da Prato G., 1996, LONDON MATH SOC LECT, V229
[9]   Critical slowing down on the dynamics of a bistable reaction-diffusion system in the neighborhood of its critical point [J].
de Rueda, JMR ;
Izús, GG ;
Borzi, CH .
JOURNAL OF STATISTICAL PHYSICS, 1999, 97 (3-4) :803-809
[10]  
Erbar M., ARXIV10122718