Single-Chip W-band SiGe HBT Transceivers and Receivers for Doppler Radar and Millimeter-Wave Imaging

被引:67
作者
Nicolson, Sean T. [1 ]
Chevalier, Pascal [2 ]
Sautreuil, Bernard [2 ]
Voinigescu, Sorin P. [1 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] STMicroelect, F-38926 Crolles, France
关键词
Automotive radar; correlation; Doppler radar; low-noise amplifiers; millimeter-wave imaging; noise figure; phase noise; power amplifiers; SiGe HBT; W-band transceivers;
D O I
10.1109/JSSC.2008.2002934
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the first single-chip direct-conversion 77-85 GHz transceiver fabricated in SiGe HBT technology, intended for Doppler radar and millimeter-wave imaging, particularly within the automotive radar band of 77-81 GHz. A 1.3 onto x 0.9 mm 86-96 GHz receiver is also presented. The transceiver, fabricated in a 130 nm SiGe HBT technology with f(T)/f(MAX) Of 230/300 GHz, consumes 780 mW, and occupies 1.3 mm x 0.9 mm of die area. Furthermore, it achieves 40 dB conversion gain in the receiver at 82 GHz, a 3 dB bandwidth extending from 77 to 85 GHz at 25 degrees C, and covering the entire 77-81 GHz band up to 100 degrees C, record 3.85 dB DSB noise figure measured at 82 GHz LO and 1 GHz IF, and an IP1dB of -35 dBm. The transmitter provides + 11.5 dBm of saturated output power at 77 GHz, and a divided by 64 static frequency divider is included on-die. Successful detection of a Doppler shift of 30 Hz at a range of 6 m is shown. The 86-96 GHz receiver achieves 31 dB conversion gain, a 3 dB bandwidth of 10 GHz, and 5.2 dB DSB noise figure at 96 GHz LO and I GHz IF, and -99 dBc/Hz phase noise at 1 MHz offset. System-level layout and integration techniques that address the challenges of low-voltage transceiver implementation are also discussed.
引用
收藏
页码:2206 / 2217
页数:12
相关论文
共 35 条
[1]  
Abele P, 2004, 2004 TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS, DIGEST OF PAPERS, P65
[2]  
Arnaud F, 2004, 2004 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, P10
[3]   A 77-GHz phased-array transceiver with on-chip antennas in silicon: Receiver and antennas [J].
Babakhani, Aydin ;
Guan, Xiang ;
Komijani, Abbas ;
Natarajan, Arun ;
Hajimiri, Ali .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (12) :2795-2806
[4]  
BUDGE MC, 1993, RECORD OF THE 1993 IEEE NATIONAL RADAR CONFERENCE, P212, DOI 10.1109/NRC.1993.270463
[5]   230-GHz self-aligned SiGeCHBT for optical and millimeter-wave applications [J].
Chevalier, P ;
Fellous, C ;
Rubaldo, L ;
Pourchon, F ;
Pruvost, S ;
Beerkens, R ;
Saguin, F ;
Zerounian, N ;
Barbalat, B ;
Lepilliet, S ;
Dutartre, D ;
Céli, D ;
Telliez, I ;
Gloria, D ;
Aniel, F ;
Danneville, F ;
Chantre, A .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2005, 40 (10) :2025-2034
[6]  
Dehlink B, 2006, IEEE RAD FREQ INTEGR, P235
[7]  
Dehlink B, 2006, COMP SEMICOND INTEGR, P197
[8]   30-100-GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits [J].
Dickson, TO ;
LaCroix, MA ;
Boret, S ;
Gloria, D ;
Beerkens, R ;
Voinigescu, SP .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (01) :123-133
[9]   Ultra-wideband radar sensors for short-range vehicular applications [J].
Gresham, I ;
Jenkins, A ;
Egri, R ;
Eswarappa, C ;
Kinayman, N ;
Jain, N ;
Anderson, R ;
Kolak, F ;
Wohlert, R ;
Bawell, SP ;
Bennett, J ;
Lanteri, JP .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2004, 52 (09) :2105-2122
[10]   A low-power low-noise single-chip receiver front-end for automotive radar at 77 GHz in silicon-germanium bipolar technology [J].
Hartmann, Marcus ;
Wagner, Christoph ;
Seemann, Kay ;
Platz, Johannes ;
Jaeger, Herbert ;
Weigel, Robert .
2007 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS (RFIC) SYMPOSIUM, DIGEST OF PAPERS, 2007, :149-+