Finite-volume matrix Hamiltonian model for a Δ → Nπ system

被引:57
作者
Hall, J. M. M. [1 ]
Hsu, A. C-P. [1 ]
Leinweber, D. B. [1 ]
Thomas, A. W. [1 ,2 ]
Young, R. D. [1 ,2 ]
机构
[1] Univ Adelaide, Sch Chem & Phys, Special Res Ctr Subat Struct Matter CSSM, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Sch Chem & Phys, ARC Ctr Excellence Particle Phys Terascale, Adelaide, SA 5005, Australia
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 09期
基金
澳大利亚研究理事会;
关键词
CHIRAL PERTURBATION-THEORY; BARYON MASSES; BAG MODEL; STATES;
D O I
10.1103/PhysRevD.87.094510
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A matrix Hamiltonian model is developed to address the finite-volume effects appearing in studies of baryon resonances in lattice QCD. The Hamiltonian model includes interaction terms in a transparent way and can be readily generalized to address multichannel problems. The eigenvalue equation of the model is exactly solvable and can be matched onto chiral effective field theory. The model is investigated in the case of Delta -> N pi scattering. A robust method for determining the resonance parameters from lattice QCD is developed. It involves constraining the free parameters of the model based on the lattice spectrum in question. The method is tested in the context of a set of pseudodata, and a picture of the model dependence is obtained by examining a variety of regularization schemes in the model. A comparison is made with the Luscher method, and it is found that the matrix Hamiltonian method is equally robust. Both methods are tested in a more realistic scenario, where a background interaction corresponding to direct N pi <-> N pi scattering is incorporated into the pseudodata. The resulting extraction of the resonance parameters associated with the Delta baryon resonance provides evidence that an effective field theory style of approach yields a successful realization of finite-volume effects in the context of baryon resonances.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Finite volume treatment of ππ scattering and limits to phase shifts extraction from lattice QCD [J].
Albaladejo, M. ;
Oller, J. A. ;
Oset, E. ;
Rios, G. ;
Roca, L. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (08)
[2]   The mass of the Δ resonance in a finite volume: fourth-order calculation [J].
Bernard, V. ;
Hoja, D. ;
Meissner, U. -G. ;
Rusetsky, A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06)
[3]  
Bernard V., 2008, J HIGH ENERGY PHYS, V08, P024
[4]  
Bernard V., 2012, J HIGH ENERGY PHYS, V09, P023
[5]  
Blatt J.M., 1952, Theoretical Nuclear Physics
[6]   Scalar mesons moving in a finite volume and the role of partial wave mixing [J].
Doering, M. ;
Meissner, U. -G. ;
Oset, E. ;
Rusetsky, A. .
EUROPEAN PHYSICAL JOURNAL A, 2012, 48 (08) :114
[7]   Finite volume effects in pion-kaon scattering and reconstruction of the κ(800) resonance [J].
Doering, M. ;
Meissner, U. -G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01)
[8]   Unitarized Chiral Perturbation Theory in a finite volume: Scalar meson sector [J].
Doering, M. ;
Meissner, U. -G. ;
Oset, E. ;
Rusetsky, A. .
EUROPEAN PHYSICAL JOURNAL A, 2011, 47 (11)
[9]   Energy dependence of the ρ resonance in ππ elastic scattering from lattice QCD [J].
Dudek, Jozef J. ;
Edwards, Robert G. ;
Thomas, Christopher E. .
PHYSICAL REVIEW D, 2013, 87 (03)
[10]   Excited state baryon spectroscopy from lattice QCD [J].
Edwards, Robert G. ;
Dudek, Jozef J. ;
Richards, David G. ;
Wallace, Stephen J. .
PHYSICAL REVIEW D, 2011, 84 (07)