interplanetary medium;
magnetohydrodynamics (MHD);
methods: numerical;
solar wind;
Sun: corona;
Sun: coronal mass ejections (CMEs);
3-DIMENSIONAL MHD SIMULATION;
GLOBAL SOLAR CORONA;
MAGNETOHYDRODYNAMIC MODEL;
PARTICLE-ACCELERATION;
TRANSITION REGION;
ALFVEN WAVES;
LARGE-ANGLE;
SHOCK-WAVE;
WIND MODEL;
FLUX ROPE;
D O I:
10.1088/0004-637X/773/1/50
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
During Carrington rotation (CR) 2107, a fast coronal mass ejection (CME; >2000 km s(-1)) occurred in active region NOAA 11164. This event is also associated with a solar energetic particle event. In this study, we present simulations of this CME with one-temperature (1T) and two-temperature (2T: coupled thermodynamics of the electron and proton populations) models. Both the 1T and 2T models start from the chromosphere with heat conduction and radiative cooling. The background solar wind is driven by Alfven-wave pressure and heated by Alfven-wave dissipation in which we have incorporated the balanced turbulence at the top of the closed field lines. The magnetic field of the inner boundary is set up using a synoptic map from Solar Dynamics Observatory/Helioseismic and Magnetic Imager. The Titov-Demoulin flux-rope model is used to initiate the CME event. We compare the propagation of fast CMEs and the thermodynamics of CME-driven shocks in both the 1T and 2T CME simulations. Also, the synthesized white light images are compared with the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph observations. Because there is no distinction between electron and proton temperatures, heat conduction in the 1T model creates an unphysical temperature precursor in front of the CME-driven shock and makes the shock parameters (e. g., shock Mach number, compression ratio) incorrect. Our results demonstrate the importance of the electron heat conduction in conjunction with proton shock heating in order to produce the physically correct CME structures and CME-driven shocks.
机构:
NASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20716 USANASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20716 USA
Breech, B.
;
Matthaeus, W. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
Univ Delaware, Bartol Res Inst, Newark, DE 19716 USANASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20716 USA
Matthaeus, W. H.
;
Cranmer, S. R.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USANASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20716 USA
Cranmer, S. R.
;
Kasper, J. C.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USANASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20716 USA
Kasper, J. C.
;
Oughton, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Waikato, Dept Math, Hamilton 3240, New ZealandNASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20716 USA
机构:
NASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20716 USANASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20716 USA
Breech, B.
;
Matthaeus, W. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
Univ Delaware, Bartol Res Inst, Newark, DE 19716 USANASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20716 USA
Matthaeus, W. H.
;
Cranmer, S. R.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USANASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20716 USA
Cranmer, S. R.
;
Kasper, J. C.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USANASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20716 USA
Kasper, J. C.
;
Oughton, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Waikato, Dept Math, Hamilton 3240, New ZealandNASA, Goddard Space Flight Ctr, Lab Solar & Space Phys, Greenbelt, MD 20716 USA