Existence and Multiplicity of Homoclinic Orbits for Second-Order Hamiltonian Systems with Superquadratic Potential

被引:4
作者
Lv, Ying [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
THEOREMS;
D O I
10.1155/2013/328630
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence and multiplicity of homoclinic orbits for second-order Hamiltonian systems with local superquadratic potential by using the Mountain Pass Theorem and the Fountain Theorem, respectively.
引用
收藏
页数:12
相关论文
共 31 条
[1]   Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation [J].
Alves, CO ;
Carriao, PC ;
Miyagaki, OH .
APPLIED MATHEMATICS LETTERS, 2003, 16 (05) :639-642
[2]  
Arioli G., 1995, TOPOL METHOD NONL AN, V6, P189
[3]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[4]   Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems [J].
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) :157-172
[5]  
Coti-Zelati V, 1991, J AM MATH SOC, V4, P693
[6]   Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems [J].
Ding, Yanheng ;
Lee, Cheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1395-1413
[8]  
Felmer PL., 1998, ANN SC NORM SUPER S, V26, P285
[9]   Homoclinic solutions for a class of the second order Hamiltonian systems [J].
Izydorek, M ;
Janczewska, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (02) :375-389
[10]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P223