Testing of Models of Flow-Induced Hemolysis in Blood Flow Through Hypodermic Needles

被引:13
作者
Chen, Yangsheng [1 ]
Kent, Timothy L. [1 ]
Sharp, M. Keith [1 ]
机构
[1] Univ Louisville, Dept Mech Engn, Louisville, KY 40292 USA
关键词
Hypodermic needles; Red blood cell; Blood damage; Computational fluid dynamics; Fluid stress; FINITE-ELEMENT-ANALYSIS; LAW MATHEMATICAL-MODEL; DAMAGE PREDICTION; CHANNEL FLOW; PUMP; CATHETERS; CYLINDER; LAMINAR; CELLS; LIFT;
D O I
10.1111/j.1525-1594.2012.01569.x
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Hemolysis caused by flow in hypodermic needles interferes with a number of tests on blood samples drawn by venipuncture, including assays for metabolites, electrolytes, and enzymes, causes discomfort during dialysis sessions, and limits transfusion flow rates. To evaluate design modifications to address this problem, as well as hemolysis issues in other cardiovascular devices, computational fluid dynamics (CFD)-based prediction of hemolysis has potential for reducing the time and expense for testing of prototypes. In this project, three CFD-integrated blood damage models were applied to flow-induced hemolysis in 16-G needles and compared with experimental results, which demonstrated that a modified needle with chamfered entrance increased hemolysis, while a rounded entrance decreased hemolysis, compared with a standard needle with sharp entrance. After CFD simulation of the steady-state velocity field, the time histories of scalar stress along a grid of streamlines were calculated. A strain-based cell membrane failure model and two empirical power-law blood damage models were used to predict hemolysis on each streamline. Total hemolysis was calculated by weighting the predicted hemolysis along each streamline by the flow rate along each streamline. The results showed that only the strain-based blood damage model correctly predicted increased hemolysis in the beveled needle and decreased hemolysis in the rounded needle, while the power-law models predicted the opposite trends.
引用
收藏
页码:256 / 266
页数:11
相关论文
共 28 条
[1]   A tensor-based measure for estimating blood damage [J].
Arora, D ;
Behr, M ;
Pasquali, M .
ARTIFICIAL ORGANS, 2004, 28 (11) :1002-1015
[2]   A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump [J].
Arvand, A ;
Hormes, M ;
Reul, H .
ARTIFICIAL ORGANS, 2005, 29 (07) :531-540
[3]  
Blackshear PL, 1987, HDB BIOENGINEERING, P151
[4]   3-DIMENSIONAL NUMERICAL PREDICTION OF STRESS LOADING OF BLOOD PARTICLES IN A CENTRIFUGAL PUMP [J].
BLUDSZUWEIT, C .
ARTIFICIAL ORGANS, 1995, 19 (07) :590-596
[5]   MODEL FOR A GENERAL MECHANICAL BLOOD DAMAGE PREDICTION [J].
BLUDSZUWEIT, C .
ARTIFICIAL ORGANS, 1995, 19 (07) :583-589
[6]  
Chen Y, 2010, ARTIF ORGANS, V35, P145
[7]   Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas [J].
De Wachter, D ;
Verdonck, P .
ARTIFICIAL ORGANS, 2002, 26 (07) :576-582
[8]   Fast three-dimensional numerical hemolysis approximation [J].
Garon, A ;
Farinas, MI .
ARTIFICIAL ORGANS, 2004, 28 (11) :1016-1025
[9]   ESTIMATION OF SHEAR STRESS-RELATED BLOOD DAMAGE IN HEART-VALVE PROSTHESES - INVITRO COMPARISON OF 25 AORTIC VALVES [J].
GIERSIEPEN, M ;
WURZINGER, LJ ;
OPITZ, R ;
REUL, H .
INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 1990, 13 (05) :300-306
[10]   Numerical estimation of blood damage in artificial organs [J].
Goubergrits, L ;
Affeld, K .
ARTIFICIAL ORGANS, 2004, 28 (05) :499-507