Synchronization of coupled nonidentical dynamical systems

被引:27
作者
Acharyya, Suman [1 ]
Amritkar, R. E. [1 ]
机构
[1] Phys Res Lab Navrangpura, Ahmadabad 380009, Gujarat, India
关键词
MASTER STABILITY FUNCTIONS; CHAOS;
D O I
10.1209/0295-5075/99/40005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the stability of synchronized state for coupled nearly identical dynamical systems on networks by deriving an approximate master stability function (MSF). Using this MSF we treat the problem of designing a network having the best synchronizability properties. We find that the edges which connect nodes with a larger relative parameter mismatch are preferred. Also, the nodes having values at one extreme of the parameter mismatch are preferred as hubs where the extreme is the one which gives a better stability according to the MSF curve. Copyright (C) EPLA, 2012
引用
收藏
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 1986, Radiophys. Quantum Electron, DOI DOI 10.1007/BF01034476
[2]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[3]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[4]   Persistent clusters in lattices of coupled nonidentical chaotic systems [J].
Belykh, I ;
Belykh, V ;
Nevidin, K ;
Hasler, M .
CHAOS, 2003, 13 (01) :165-178
[5]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[6]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[7]   The development of generalized synchronization on complex networks [J].
Guan, Shuguang ;
Wang, Xingang ;
Gong, Xiaofeng ;
Li, Kun ;
Lai, C. -H. .
CHAOS, 2009, 19 (01)
[8]   Paths to globally generalized synchronization in scale-free networks [J].
Hung, Yao-Chen ;
Huang, Yu-Ting ;
Ho, Ming-Chung ;
Hu, Chin-Kun .
PHYSICAL REVIEW E, 2008, 77 (01)
[9]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[10]   Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? [J].
Nishikawa, T ;
Motter, AE ;
Lai, YC ;
Hoppensteadt, FC .
PHYSICAL REVIEW LETTERS, 2003, 91 (01)