Bifunctional anode catalysts for direct methanol fuel cells

被引:164
作者
Rossmeisl, Jan [1 ,2 ]
Ferrin, Peter [1 ]
Tritsaris, Georgios A. [2 ]
Nilekar, Anand Udaykumar [1 ]
Koh, Shirlaine [3 ,6 ]
Bae, Sang Eun [4 ]
Brankovic, Stanko R. [3 ,4 ]
Strasser, Peter [5 ]
Mavrikakis, Manos [1 ]
机构
[1] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
[2] Tech Univ Denmark, Dept Phys, Ctr Atom Scale Mat Design, DK-2800 Lyngby, Denmark
[3] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA
[4] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
[5] Tech Univ Berlin, Dept Chem, Div Chem Engn, D-16123 Berlin, Germany
[6] Singapore Polytech, Sch Chem & Life Sci, Singapore 139651, Singapore
基金
美国国家科学基金会;
关键词
GAS SHIFT REACTION; OXYGEN REDUCTION; MONOLAYER ELECTROCATALYSTS; DIRECT OXIDATION; ALLOY CATALYSTS; CARBON-MONOXIDE; ELECTROOXIDATION; PLATINUM; ADSORPTION; SURFACES;
D O I
10.1039/c2ee21455e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to react off surface intermediates (such as CO* and OH*). Based on this analysis, an alloy catalyst made up of Cu and Pt should have a synergistic effect facilitating the activity towards methanol electro-oxidation. Using these two reactivity descriptors, a surface PtCu3 alloy is proposed to have the best catalytic properties of the Pt-Cu model catalysts tested, similar to those of a Pt-Ru bulk alloy. To validate the model, experiments on a Pt(111) surface modified with different amounts of Cu adatoms are performed. Adding Cu to a Pt(111) surface increases the methanol oxidation current by more than a factor of three, supporting our theoretical predictions for improved electrocatalysts.
引用
收藏
页码:8335 / 8342
页数:8
相关论文
共 58 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]   Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen [J].
Alayoglu, Selim ;
Nilekar, Anand U. ;
Mavrikakis, Manos ;
Eichhorn, Bryan .
NATURE MATERIALS, 2008, 7 (04) :333-338
[3]   Adsorption-Driven Surface Segregation of the Less Reactive Alloy Component [J].
Andersson, Klas J. ;
Calle-Vallejo, Federico ;
Rossmeisl, Jan ;
Chorkendorff, Lb .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (06) :2404-2407
[4]   Electrocatalysts for methanol oxidation with ultra low content of Pt and Ru [J].
Ando, Yuji ;
Sasaki, Kotaro ;
Adzic, Radoslav .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (06) :1135-1138
[5]   Dipole correction for surface supercell calculations [J].
Bengtsson, L .
PHYSICAL REVIEW B, 1999, 59 (19) :12301-12304
[6]   Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach [J].
Cao, D ;
Lu, GQ ;
Wieckowski, A ;
Wasileski, SA ;
Neurock, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (23) :11622-11633
[7]   SPECIAL POINTS IN BRILLOUIN ZONE [J].
CHADI, DJ ;
COHEN, ML .
PHYSICAL REVIEW B, 1973, 8 (12) :5747-5753
[8]   Formate, an active intermediate for direct oxidation of methanol on Pt electrode [J].
Chen, YX ;
Miki, A ;
Ye, S ;
Sakai, H ;
Osawa, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (13) :3680-3681
[9]   Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry [J].
Choi, WC ;
Kim, JD ;
Woo, SI .
CATALYSIS TODAY, 2002, 74 (3-4) :235-240
[10]   PREPARATION OF MONO-CRYSTALLINE PT MICROELECTRODES AND ELECTROCHEMICAL STUDY OF THE PLANE SURFACES CUT IN THE DIRECTION OF THE (111) AND (110) PLANES [J].
CLAVILIER, J ;
FAURE, R ;
GUINET, G ;
DURAND, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1980, 107 (01) :205-209