Local morphisms and modules with a semilocal endomorphism ring

被引:31
作者
Facchini, Alberto
Herbera, Dolors
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
local morphism; endomorphism ring; semilocal ring; spectral category;
D O I
10.1007/s10468-006-9011-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study local morphisms in the setting of general noncommutative rings. In particular, we apply local morphisms to study endomorphism rings of modules. We use our constructions to determine classes of modules with semilocal endomorphism rings. For instance, we prove that every finitely presented right module over a semilocal ring has a semilocal endomorphism ring.
引用
收藏
页码:403 / 422
页数:20
相关论文
共 22 条
[1]  
Anderson F. W., 1992, GRADUATE TEXTS MATH, V13
[2]  
[Anonymous], 1998, PROGR MATH, V167
[3]  
BJORK JE, 1971, J REINE ANGEW MATH, V247, P123
[4]   CONDITIONS WHICH IMPLY THAT SUBRINGS OF SEMIPRIMARY RINGS ARE SEMIPRIMARY [J].
BJORK, JE .
JOURNAL OF ALGEBRA, 1971, 19 (03) :384-&
[5]   POWER CANCELLATION FOR ARTINIAN-MODULES [J].
CAMPS, R ;
MENAL, P .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (07) :2081-2095
[6]   ON SEMILOCAL RINGS [J].
CAMPS, R ;
DICKS, W .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 81 (1-2) :203-211
[7]  
COHN PM, 1977, LONDON MATH SOC LECT, V27
[8]   Uniqueness of monogeny classes for uniform objects in abelian categories [J].
Diracca, L ;
Facchini, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 172 (2-3) :183-191
[9]   Direct sum decompositions of modules, semilocal endomorphism rings, and Krull monoids [J].
Facchini, A .
JOURNAL OF ALGEBRA, 2002, 256 (01) :280-307
[10]  
Facchini A., 2000, CONT MATH, V259, P181