Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

被引:97
作者
An, L. [1 ]
Zhao, T. S. [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Hong Kong, Peoples R China
关键词
Fuel cells; Alkaline direct ethanol fuel cells; Transport phenomena; Membrane electrode assembly; Cell performance; ANION-EXCHANGE MEMBRANE; DOPED POLYBENZIMIDAZOLE MEMBRANE; HYDROGEN-PEROXIDE; ALCOHOL OXIDATION; WATER-UPTAKE; PERFORMANCE; CATHODE; ELECTRODE; CATALYST; SYSTEMS;
D O I
10.1016/j.jpowsour.2016.11.117
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 211
页数:13
相关论文
共 76 条
[1]   Carbon-neutral sustainable energy technology: Direct ethanol fuel cells [J].
An, L. ;
Zhao, T. S. ;
Li, Y. S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 50 :1462-1468
[2]   Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production [J].
An, L. ;
Zhao, T. S. ;
Chai, Z. H. ;
Tan, P. ;
Zeng, L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (35) :19869-19876
[3]   A low-cost, high-performance zinc-hydrogen peroxide fuel cell [J].
An, L. ;
Zhao, T. S. ;
Zhou, X. L. ;
Yan, X. H. ;
Jung, C. Y. .
JOURNAL OF POWER SOURCES, 2015, 275 :831-834
[4]   A high-performance ethanol-hydrogen peroxide fuel cell [J].
An, L. ;
Zhao, T. S. ;
Zhou, X. L. ;
Wei, L. ;
Yan, X. H. .
RSC ADVANCES, 2014, 4 (110) :65031-65034
[5]   Modeling of the mixed potential in hydrogen peroxide-based fuel cells [J].
An, L. ;
Zhao, T. S. ;
Chai, Z. H. ;
Zeng, L. ;
Tan, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (14) :7407-7416
[6]   Performance of an alkaline direct ethanol fuel cell with hydrogen peroxide as oxidant [J].
An, L. ;
Zhao, T. S. ;
Zeng, L. ;
Yan, X. H. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (05) :2320-2324
[7]   Mathematical modeling of alkaline direct ethanol fuel cells [J].
An, L. ;
Chai, Z. H. ;
Zeng, L. ;
Tan, P. ;
Zhao, T. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (32) :14067-14075
[8]   An alkaline direct ethylene glycol fuel cell with an alkali-doped polybenzimidazole membrane [J].
An, L. ;
Zeng, L. ;
Zhao, T. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) :10602-10606
[9]   Agar chemical hydrogel electrode binder for fuel-electrolyte-fed fuel cells [J].
An, L. ;
Zhao, T. S. ;
Zeng, L. .
APPLIED ENERGY, 2013, 109 :67-71
[10]   Comparison of different types of membrane in alkaline direct ethanol fuel cells [J].
An, L. ;
Zhao, T. S. ;
Wu, Q. X. ;
Zeng, L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (19) :14536-14542