RELATIVE CLIFFORD INEQUALITY FOR VARIETIES FIBERED BY CURVES

被引:0
作者
Zhang, Tong [1 ]
机构
[1] East China Normal Univ, Sch Math Sci, Shanghai Key Lab PMMP, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
关键词
SEVERI INEQUALITY; NOETHER INEQUALITY; GENERAL TYPE; SURFACES; FAMILIES; SLOPE; REGULARITY; DIVISORS; SYSTEMS; IMAGES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a sharp relative Clifford inequality for relatively spe-cial divisors on varieties fibered by curves. It generalizes the classi-cal Clifford inequality about a single curve to a fibration of curves. It yields a geographical inequality for varieties Albanese-fib ered by curves. We also apply it to deduce a slope inequality for some higher dimensional families of curves. It sheds light on the exis-tence of a more general Cornalba-Harris-Xiao type inequality for families of curves.
引用
收藏
页码:341 / 376
页数:36
相关论文
共 46 条
  • [1] Higher-dimensional Clifford-Severi equalities
    Angel Barja, Miguel
    Pardini, Rita
    Stoppino, Lidia
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (08)
  • [2] LINEAR SYSTEMS ON IRREGULAR VARIETIES
    Angel Barja, Miguel
    Pardini, Rita
    Stoppino, Lidia
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2020, 19 (06) : 2087 - 2125
  • [3] Arbarello E, 2011, GRUNDLEHR MATH WISS, V268, P1, DOI 10.1007/978-3-540-69392-5_1
  • [4] Lower bounds of the slope of fibred threefolds
    Barja, MA
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (04) : 461 - 491
  • [5] GENERALIZED CLIFFORD-SEVERI INEQUALITY AND THE VOLUME OF IRREGULAR VARIETIES
    Barja, Miguel A.
    [J]. DUKE MATHEMATICAL JOURNAL, 2015, 164 (03) : 541 - 568
  • [6] Batyrev V.V., 1981, IZV AKAD NAUK SSSR M, V45, P704
  • [7] Batyrev V. V., 1999, J MATH SCI, V94, P1021
  • [8] Birkenhake, 2004, COMPLEX ABELIAN VARI, V302
  • [9] Bombieri E., 1973, I HAUTES ETUDES SCI, V42, P171
  • [10] Chen JA, 2015, COMMUN ANAL GEOM, V23, P1