Mathematical behavior of solutions for a logarithmic p-Laplacian equation with distributed delay

被引:0
作者
Piskin, Erhan [1 ]
Yuksekkaya, Hazal [1 ]
机构
[1] Dicle Univ, Dept Math, Diyarbakir, Turkey
来源
ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL | 2022年
关键词
blow up; decay; delay; existence; logarithmic source term; p-Laplacian equation; WAVE-EQUATION; BLOW-UP; BOUNDARY; STABILIZATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we concerned with a logarithmic p-Laplacian equation with distributed internal delay. Firstly, we obtain the global existence of solutions by utilizing the well-depth method. Later, under appropriate assumptions on the weight of the delay and that of frictional damping, we establish the exponential decay. Moreover, we obtain the blow up results for negative initial energy.
引用
收藏
页码:35 / 51
页数:17
相关论文
共 29 条
[1]  
Adams R. A., 2003, SOBOLEV SPACES
[2]  
Antontsev S., 2021, Electron. J. Differ, P1
[3]   One-dimensional Klein-Gordon equation with logarithmic nonlinearities [J].
Bartkowski, Konrad ;
Gorka, Przemyslaw .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (35)
[4]  
BIALYNICKIBIRULA I, 1975, B ACAD POL SCI SMAP, V23, P461
[5]   NONLINEAR-WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
ANNALS OF PHYSICS, 1976, 100 (1-2) :62-93
[6]  
Cazenave T., 1980, Annales de la Faculte des Sciences de Toulouse, V2, P21
[7]   AN EXAMPLE ON THE EFFECT OF TIME DELAYS IN BOUNDARY FEEDBACK STABILIZATION OF WAVE-EQUATIONS [J].
DATKO, R ;
LAGNESE, J ;
POLIS, MP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (01) :152-156
[8]  
Górka P, 2009, ACTA PHYS POL B, V40, P59
[9]  
Hazal Y., 2021, J FUNCT SPACES, V2021, P1
[10]  
Ka fini M, 2021, ANN U FERRARA, V67