G-symmetric monoidal categories of modules over equivariant commutative ring spectra

被引:8
作者
Blumberg, Andrew J. [1 ]
Hill, Michael A. [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
equivariant commutative ring spectra; module category; equivariant symmetric monoidal category;
D O I
10.2140/tunis.2020.2.237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the multiplicative structures that arise on categories of equivariant modules over certain equivariant commutative ring spectra. Building on our previous work on N-infinity ring spectra, we construct categories of equivariant operadic modules over N-infinity rings that are structured by equivariant linear isometries operads. These categories of modules are endowed with equivariant symmetric monoidal structures, which amounts to the structure of an "incomplete Mackey functor in homotopical categories". In particular, we construct internal norms which satisfy the double coset formula. One application of the work of this paper is to provide a context in which to describe the behavior of Bousfield localization of equivariant commutative rings. We regard the work of this paper as a first step towards equivariant derived algebraic geometry.
引用
收藏
页码:237 / 286
页数:50
相关论文
共 36 条
[11]   Multiplicativity of the idempotent splittings of the Burnside ring and the G-sphere spectrum [J].
Boehme, Benjamin .
ADVANCES IN MATHEMATICS, 2019, 347 :904-939
[12]   Constructing equivariant spectra via categorical Mackey functors [J].
Bohmann, Anna Marie ;
Osorno, Angelica .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (01) :537-563
[13]   Witt vectors and equivariant ring spectra applied to cobordism [J].
Brun, M. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :351-385
[14]  
Elmendorf A., 1997, Math. Surveys Monogr, V47, DOI DOI 10.1090/SURV/047
[15]   Algebras over equivariant sphere spectra [J].
Elmendorf, AD ;
May, JP .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 116 (1-3) :139-149
[16]   An algebraic model for rational torus-equivariant spectra [J].
Greenlees, J. P. C. ;
Shipley, B. .
JOURNAL OF TOPOLOGY, 2018, 11 (03) :666-719
[17]   Fixed point adjunctions for equivariant module spectra [J].
Greenlees, J. P. C. ;
Shipley, Brooke .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (03) :1779-1799
[18]   Localization and completion theorems for MU-module spectra [J].
Greenlees, JPC ;
May, JP .
ANNALS OF MATHEMATICS, 1997, 146 (03) :509-544
[19]   Equivariant iterated loop space theory and permutative G-categories [J].
Guillou, Bertrand J. ;
May, J. Peter .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (06) :3259-3339
[20]   On the nonexistence of elements of Kervaire invariant one [J].
Hill, M. A. ;
Hopkins, M. J. ;
Ravenel, D. C. .
ANNALS OF MATHEMATICS, 2016, 184 (01) :1-262