G-symmetric monoidal categories of modules over equivariant commutative ring spectra

被引:8
作者
Blumberg, Andrew J. [1 ]
Hill, Michael A. [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
equivariant commutative ring spectra; module category; equivariant symmetric monoidal category;
D O I
10.2140/tunis.2020.2.237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the multiplicative structures that arise on categories of equivariant modules over certain equivariant commutative ring spectra. Building on our previous work on N-infinity ring spectra, we construct categories of equivariant operadic modules over N-infinity rings that are structured by equivariant linear isometries operads. These categories of modules are endowed with equivariant symmetric monoidal structures, which amounts to the structure of an "incomplete Mackey functor in homotopical categories". In particular, we construct internal norms which satisfy the double coset formula. One application of the work of this paper is to provide a context in which to describe the behavior of Bousfield localization of equivariant commutative rings. We regard the work of this paper as a first step towards equivariant derived algebraic geometry.
引用
收藏
页码:237 / 286
页数:50
相关论文
共 36 条
[1]  
Balmer P, 2005, J REINE ANGEW MATH, V588, P149
[2]   The spectrum of the equivariant stable homotopy category of a finite group [J].
Balmer, Paul ;
Sanders, Beren .
INVENTIONES MATHEMATICAE, 2017, 208 (01) :283-326
[3]   AN ALGEBRAIC MODEL FOR RATIONAL NAIVE-COMMUTATIVE G-EQUIVARIANT RING SPECTRA FOR FINITE G [J].
Barnes, David ;
Greenlees, J. P. C. ;
Kedziorek, Magdalena .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2019, 21 (01) :73-93
[4]   The Balmer spectrum of the equivariant homotopy category of a finite abelian group [J].
Barthel, Tobias ;
Hausmann, Markus ;
Naumann, Niko ;
Nikolaus, Thomas ;
Noel, Justin ;
Stapleton, Nathaniel .
INVENTIONES MATHEMATICAE, 2019, 216 (01) :215-240
[5]  
Barwick C, 2016, ARXIV
[6]  
Blumberg A. J., 2017, ARXIV
[7]   Continuous functors as a model for the equivariant stable homotopy category [J].
Blumberg, Andrew J. .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 :2255-2293
[8]   Incomplete Tambara functors [J].
Blumberg, Andrew J. ;
Hill, Michael A. .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (02) :723-766
[9]   Operadic multiplications in equivariant spectra, norms, and transfers [J].
Blumberg, Andrew J. ;
Hill, Michael A. .
ADVANCES IN MATHEMATICS, 2015, 285 :658-708
[10]   Topological Hochschild homology of Thom spectra and the free loop space [J].
Blumberg, Andrew J. ;
Cohen, Ralph L. ;
Schlichtkrull, Christian .
GEOMETRY & TOPOLOGY, 2010, 14 (02) :1165-1242