Test of mutually unbiased bases for six-dimensional photonic quantum systems

被引:35
作者
D'Ambrosio, Vincenzo [1 ]
Cardano, Filippo [2 ]
Karimi, Ebrahim [2 ]
Nagali, Eleonora [1 ]
Santamato, Enrico [2 ,3 ]
Marrucci, Lorenzo [2 ,4 ]
Sciarrino, Fabio [1 ]
机构
[1] Sapienza Univ Roma, Dipartimento Fis, I-00185 Rome, Italy
[2] Univ Napoli Federico II, I-80126 Naples, Italy
[3] Consorzio Nazl Interuniv Sci Fisiche Mat, Naples, Italy
[4] CNR SPIN, I-80126 Naples, Italy
基金
欧洲研究理事会;
关键词
CRYPTOGRAPHY; LIGHT;
D O I
10.1038/srep02726
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In quantum information, complementarity of quantum mechanical observables plays a key role. The eigenstates of two complementary observables form a pair of mutually unbiased bases (MUBs). More generally, a set of MUBs consists of bases that are all pairwise unbiased. Except for specific dimensions of the Hilbert space, the maximal sets of MUBs are unknown in general. Even for a dimension as low as six, the identification of a maximal set of MUBs remains an open problem, although there is strong numerical evidence that no more than three simultaneous MUBs do exist. Here, by exploiting a newly developed holographic technique, we implement and test different sets of three MUBs for a single photon six-dimensional quantum state (a "qusix"), encoded exploiting polarization and orbital angular momentum of photons. A close agreement is observed between theory and experiments. Our results can find applications in state tomography, quantitative wave-particle duality, quantum key distribution.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Improving Quantum State Estimation with Mutually Unbiased Bases [J].
Adamson, R. B. A. ;
Steinberg, A. M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[2]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[3]  
Archer C, 2003, ARXIVQUANTPH0312204V
[4]   Pixelated phase computer holograms for the accurate encoding of scalar complex fields [J].
Arrizon, Victor ;
Ruiz, Ulises ;
Carrada, Rosibel ;
Gonzalez, Luis A. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (11) :3500-3507
[5]   A new proof for the existence of mutually unbiased bases [J].
Bandyopadhyay, S ;
Boykin, PO ;
Roychowdhury, V ;
Vatan, F .
ALGORITHMICA, 2002, 34 (04) :512-528
[6]   Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography [J].
Bechmann-Pasquinucci, H ;
Gisin, N .
PHYSICAL REVIEW A, 1999, 59 (06) :4238-4248
[7]  
Bengtsson I, 2006, ARXIVQUANTPH0610216V
[8]   Mutually unbiased bases and Hadamard matrices of order six [J].
Bengtsson, Ingemar ;
Bruzda, Wojciech ;
Ericsson, Asa ;
Larsson, Jan-Ake ;
Tadej, Wojciech ;
Zyczkowski, Karol .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
[9]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[10]  
Bohr N, 1949, A EINSTEIN PHILOS SC