Efficient quadrature rules for solving nonlinear fractional integro-differential equations of the Hammerstein type

被引:12
作者
Susahab, D. Nazari [1 ]
Shahmorad, S. [2 ]
Jahanshahi, M. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz 5375171379, Iran
[2] Univ Tabriz, Dept Appl Math, Tabriz 5166616471, Iran
关键词
Quadrature method; Hammerstein type; Fractional integro-differential equations; OPERATIONAL MATRIX; VOLTERRA;
D O I
10.1016/j.apm.2015.01.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this paper is to solve nonlinear fractional integro-differential equations of the Hammerstein type. The basic idea is to convert fractional integro-differential equations to a type of second kind Volterra integral equations. Then the obtained Volterra integral equation will be solved with some suitable quadrature rules. We are interested in using a simple method to obtain riveting results. Numerical tests for demonstrating the convergence and accuracy of the method will be included. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:5452 / 5458
页数:7
相关论文
共 20 条
[1]   ON THE EXISTENCE OF SOLUTIONS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS [J].
Aghajani, Asadollah ;
Jalilian, Yaghoub ;
Trujillo, Juan J. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (01) :44-69
[2]   Application of the collocation method for solving nonlinear fractional integro-differential equations [J].
Eslahchi, M. R. ;
Dehghan, Mehdi ;
Parvizi, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 257 :105-128
[3]  
Ghazanfari B., 2010, Aust. J. Basic Appl. Sci., V4, P5823
[4]  
Hackbusch W., 1995, INTEGRAL EQUATIONS T, V120, DOI DOI 10.1007/978-3-0348-9215-5
[5]  
Irandoust-pakchin S, 2013, IRAN J SCI TECHNOL A, V37, P53
[6]   A special successive approximations method for solving boundary value problems including ordinary differential equations [J].
Jahanshahi, Mohammad ;
Nazari, Davoud ;
Aliev, Nihan .
MATHEMATICAL SCIENCES, 2013, 7 (01)
[7]   A method for obtaining the operational matrix of fractional Jacobi functions and applications [J].
Kayedi-Bardeh, Amin ;
Eslahchi, M. R. ;
Dehghan, Mehdi .
JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (05) :736-748
[8]  
Kilbas AA., 2006, Theory and Applications of Fractional Differential Equations, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[9]   The construction of operational matrix of fractional derivatives using B-spline functions [J].
Lakestani, Mehrdad ;
Dehghan, Mehdi ;
Irandoust-pakchin, Safar .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (03) :1149-1162
[10]   Spectral approximations to the fractional integral and derivative [J].
Li, Changpin ;
Zeng, Fanhai ;
Liu, Fawang .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (03) :383-406