Light bosons in the photosphere and the solar abundance problem

被引:12
作者
Vincent, A. C. [1 ]
Scott, P. [2 ]
Trampedach, R. [3 ,4 ]
机构
[1] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain
[2] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[3] Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA
[4] NIST, Boulder, CO 80309 USA
基金
加拿大自然科学与工程研究理事会;
关键词
elementary particles; line: formation; Sun: abundances; Sun: atmosphere; cosmology: theory; LINE FORMATION; OXYGEN ABUNDANCE; MODELS; GRANULATION; SIMULATIONS; HELIOSEISMOLOGY; OPACITIES; PHOTON; QUIET; NEON;
D O I
10.1093/mnras/stt683
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Spectroscopy is used to measure the elemental abundances in the outer layers of the Sun, whereas helioseismology probes the interior. It is well known that current spectroscopic determinations of the chemical composition are starkly at odds with the metallicity implied by helioseismology. We investigate whether the discrepancy may be due to conversion of photons to a new light boson in the solar photosphere. We examine the impact of particles with axion-like interactions with the photon on the inferred photospheric abundances, showing that resonant axion-photon conversion is not possible in the region of the solar atmosphere in which line formation occurs. Although non-resonant conversion in the line-forming regions can in principle impact derived abundances, constraints from axion-photon conversion experiments rule out the couplings necessary for these effects to be detectable. We show that this extends to hidden photons and chameleons (which would exhibit similar phenomenological behaviour), ruling out known theories of new light bosons as photospheric solutions to the solar abundance problem.
引用
收藏
页码:3332 / 3339
页数:8
相关论文
共 79 条
[41]   Solar neutrino limit on axions and keV-mass bosons [J].
Gondolo, Paolo ;
Raffelt, Georg G. .
PHYSICAL REVIEW D, 2009, 79 (10)
[42]   Standard solar composition [J].
Grevesse, N ;
Sauval, AJ .
SPACE SCIENCE REVIEWS, 1998, 85 (1-2) :161-174
[43]   Enhanced diffusion improve helioseismic agreement for solar models with revised abundances? [J].
Guzik, JA ;
Watson, LS ;
Cox, AN .
ASTROPHYSICAL JOURNAL, 2005, 627 (02) :1049-1056
[44]   EXPLORING MASS LOSS, LOW-Z ACCRETION, AND CONVECTIVE OVERSHOOT IN SOLAR MODELS TO MITIGATE THE SOLAR ABUNDANCE PROBLEM [J].
Guzik, Joyce Ann ;
Mussack, Katie .
ASTROPHYSICAL JOURNAL, 2010, 713 (02) :1108-1119
[45]   Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres Numerical methods and application to the quiet, non-magnetic, surface of a solar-type star [J].
Hayek, W. ;
Asplund, M. ;
Carlsson, M. ;
Trampedach, R. ;
Collet, R. ;
Gudiksen, B. V. ;
Hansteen, V. H. ;
Leenaarts, J. .
ASTRONOMY & ASTROPHYSICS, 2010, 517
[46]   Signatures of a hidden cosmic microwave background [J].
Jaeckel, Joerg ;
Redondo, Javier ;
Ringwald, Andreas .
PHYSICAL REVIEW LETTERS, 2008, 101 (13)
[47]   Chameleon fields: Awaiting surprises for tests of gravity in space [J].
Khoury, J ;
Weltman, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :171104-1
[48]  
Khoury J, 2004, PHYS REV D, V69, DOI 10.1103/PhysRevD.69.044026
[49]   Evading astrophysical constraints on axion-like particles -: art. no. 015 [J].
Massó, E ;
Redondo, J .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2005, (09) :277-287
[50]   Another forbidden solar oxygen abundance: the [OI] 5577 Å line [J].
Melendez, J. ;
Asplund, M. .
ASTRONOMY & ASTROPHYSICS, 2008, 490 (02) :817-821