Experimental characterisation of a novel viscoelastic rectifier design

被引:19
作者
Jensen, Kristian Ejlebjerg [1 ]
Szabo, Peter [2 ]
Okkels, Fridolin [1 ]
Alves, M. A. [3 ]
机构
[1] Tech Univ Denmark, Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Dept Chem & Biochem Engn, DK-2800 Lyngby, Denmark
[3] Univ Porto, Dept Chem Engn, CEFT, Fac Engn, P-4200465 Oporto, Portugal
关键词
bioMEMS; flow simulation; flow visualisation; measurement uncertainty; microfluidics; non-Newtonian flow; numerical analysis; rectifiers; streak photography; viscoelasticity; MICROFLUIDIC RECTIFIERS; FLUID-FLOW;
D O I
10.1063/1.4769781
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A planar microfluidic system with contractions and obstacles is characterized in terms of anisotropic flow resistance due to viscoelastic effects. The working mechanism is illustrated using streak photography, while the diodicity performance is quantified by pressure drop measurements. The point of maximum performance is found to occur at relatively low elasticity levels, with diodicity around 3.5. Based on a previously published numerical work [Ejlebjerg , Appl. Phys. Lett. 100, 234102 (2012)], 2D simulations of the FENE-CR differential constitutive model are also presented, but limited reproducibility and uncertainties of the experimental data prevent a direct comparison at low elasticity, where the flow is essentially two-dimensional. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769781]
引用
收藏
页数:8
相关论文
共 19 条
[1]   Viscoelastic flow past a confined cylinder of a low density polyethylene melt [J].
Baaijens, FPT ;
Selen, SHA ;
Baaijens, HPW ;
Peters, GWM ;
Meijer, HEH .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1997, 68 (2-3) :173-203
[2]   Flow of low viscosity Boger fluids through a microfluidic hyperbolic contraction [J].
Campo-Deano, Laura ;
Galindo-Rosales, Francisco J. ;
Pinho, Fernando T. ;
Alves, Manuel A. ;
Oliveira, Monica S. N. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2011, 166 (21-22) :1286-1296
[3]   In situ pressure measurement within deformable rectangular polydimethylsiloxane microfluidic devices [J].
Cheung, Perry ;
Toda-Peters, Kazumi ;
Shen, Amy Q. .
BIOMICROFLUIDICS, 2012, 6 (02)
[4]   A microfluidic rectifier: Anisotropic flow resistance at low Reynolds numbers [J].
Groisman, A ;
Quake, SR .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :094501-1
[5]   A microfluidics approach towards high-throughput pathogen removal from blood using margination [J].
Hou, Han Wei ;
Gan, Hiong Yap ;
Bhagat, Ali Asgar S. ;
Li, Leon D. ;
Lim, Chwee Teck ;
Han, Jongyoon .
BIOMICROFLUIDICS, 2012, 6 (02)
[6]   Topology optimization of viscoelastic rectifiers [J].
Jensen, Kristian Ejlebjerg ;
Szabo, Peter ;
Okkels, Fridolin .
APPLIED PHYSICS LETTERS, 2012, 100 (23)
[7]   Micromixer based on viscoelastic flow instability at low Reynolds number [J].
Lam, Y. C. ;
Gan, H. Y. ;
Nguyen, N. T. ;
Lie, H. .
BIOMICROFLUIDICS, 2009, 3 (01)
[8]   THE WAKE INSTABILITY IN VISCOELASTIC FLOW PAST CONFINED CIRCULAR-CYLINDERS [J].
MCKINLEY, GH ;
ARMSTRONG, RC ;
BROWN, RA .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 344 (1671) :265-304
[9]   Improvement of rectification effects in diffuser/nozzle structures with viscoelastic fluids [J].
Nguyen, Nam-Trung ;
Lam, Yee-Cheong ;
Ho, Soon-Seng ;
Low, Cassandra Lee-Ngo .
BIOMICROFLUIDICS, 2008, 2 (03)
[10]   Extensional flow of a polystyrene Boger fluid through a 4:1:4 axisymmetric contraction/expansion [J].
Rothstein, JP ;
McKinley, GH .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1999, 86 (1-2) :61-88