Combining individual animal movement and ancillary biotelemetry data to investigate population-level activity budgets

被引:72
作者
McClintock, Brett T. [1 ]
Russell, Deborah J. F. [2 ,3 ,4 ]
Matthiopoulos, Jason [5 ]
King, Ruth [3 ,4 ]
机构
[1] NOAA, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA
[2] Univ St Andrews, Sea Mammal Res Unit, St Andrews KY16 8LB, Fife, Scotland
[3] Univ St Andrews, Ctr Res Ecol & Environm Modelling, St Andrews KY16 9LZ, Fife, Scotland
[4] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9LZ, Fife, Scotland
[5] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
animal location data; harbor seal; hierarchical model; movement model; state-space model; switching behavior; telemetry; STATE-SPACE MODELS; HARBOR SEAL; PATTERNS; BEHAVIOR; TACTICS;
D O I
10.1890/12-0954.1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Recent technological advances have permitted the collection of detailed animal location and ancillary biotelemetry data that facilitate inference about animal movement and associated behaviors. However, these rich sources of individual information, location, and biotelemetry data, are typically analyzed independently, with population-level inferences remaining largely post hoc. We describe a hierarchical modeling approach, which is able to integrate location and ancillary biotelemetry (e. g., physiological or accelerometer) data from many individuals. We can thus obtain robust estimates of (1) population-level movement parameters and (2) activity budgets for a set of behaviors among which animals transition as they respond to changes in their internal and external environment. Measurement error and missing data are easily accommodated using a state-space formulation of the proposed hierarchical model. Using Bayesian analysis methods, we demonstrate our modeling approach with location and dive activity data from 17 harbor seals (Phoca vitulina) in the United Kingdom. Based jointly on movement and diving activity, we identified three distinct movement behavior states: resting, foraging, and transit, and estimated population-level activity budgets to these three states. Because harbor seals are known to dive for both foraging and transit (but not usually for resting), we compared these results to a similar population-level analysis utilizing only location data. We found that a large proportion of time steps were mischaracterized when behavior states were inferred from horizontal trajectory alone, with 33% of time steps exhibiting a majority of dive activity assigned to the resting state. Only 1% of these time steps were assigned to resting when inferred from both trajectory and dive activity data using our integrated modeling approach. There is mounting evidence of the potential perils of inferring animal behavior based on trajectory alone, but there fortunately now exist many flexible analytical techniques for extracting more out of the increasing wealth of information afforded by recent advances in biologging technology.
引用
收藏
页码:838 / 849
页数:12
相关论文
empty
未找到相关数据