ERROR ESTIMATES OF THE AGGREGATION -DIFFUSION SPLITTING ALGORITHMS FOR THE KELLER-SEGEL EQUATIONS

被引:2
作者
Huang, Hui [1 ,2 ,3 ]
Liu, Jian-Guo [2 ,3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Duke Univ, Dept Phys, Durham, NC 27708 USA
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2016年 / 21卷 / 10期
基金
中国国家自然科学基金;
关键词
Newtonian aggregation; chemotaxis; random particle method; positivity preserving; CONVERGENCE;
D O I
10.3934/dcdsb.2016107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss error estimates associated with three different aggregation-diffusion splitting schemes for the Keller-Segel equations. We start with one algorithm based on the Trotter product formula, and we show that the convergence rate is C Delta t, where Delta t is the time-step size. Secondly, we prove the convergence rate C Delta t(2) for the Strang's splitting. Lastly, we study a splitting scheme with the linear transport approximation, and prove the convergence rate C Delta t.
引用
收藏
页码:3463 / 3478
页数:16
相关论文
共 19 条
[1]  
[Anonymous], VORTICITY INCOMPRESS
[2]  
[Anonymous], MATH COMPUT IN PRESS
[3]  
[Anonymous], 2011, PARTIAL DIFFERENTIAL
[4]  
[Anonymous], LECT NOTES COMPUTER
[5]  
[Anonymous], MATH COMPUT IN PRESS
[6]  
BEALE JT, 1981, MATH COMPUT, V37, P243, DOI 10.1090/S0025-5718-1981-0628693-0
[7]  
Evans L. C., 2010, P R T L FF R N T L Q, VSecond
[8]   Operator splitting and approximate factorization for taxis-diffusion-reaction models [J].
Gerisch, A ;
Verwer, JG .
APPLIED NUMERICAL MATHEMATICS, 2002, 42 (1-3) :159-176
[9]  
GILBARG D., 2000, Elliptic Partial Differential Equations of Second Order, V2nd
[10]   CONVERGENCE OF THE RANDOM VORTEX METHOD [J].
GOODMAN, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (02) :189-220