Electrochemical Properties of 0.6Li2MnO3•0.4Li(Ni0.8Co0.15Al0.05) O2 Composite Nanopowders Prepared by Spray Pyrolysis

被引:0
作者
Jang, Yong Seung [1 ]
Kim, Jung Hyun [1 ]
Lee, Jung-Kul [1 ]
Park, Byung Kyu [2 ]
Kang, Yun Chan [1 ]
机构
[1] Konkuk Univ, Dept Chem Engn, Seoul 143701, South Korea
[2] Korean Basic Sci Inst, Suncheon Ctr, Sunchon 540742, South Korea
基金
新加坡国家研究基金会;
关键词
cathode materials; lithium battery; spray pyrolysis; lithium rich; composite material; LITHIUM-ION BATTERIES; CATHODE MATERIALS; PERFORMANCE; CELLS; CAPACITY; OXIDES; R(3)OVER-BAR-M; ELECTRODES; PARTICLES; BEHAVIOR;
D O I
暂无
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nano-sized composite cathode powders [0.6Li(2)MnO(3)center dot 0.4Li(Ni0.8Co0.15Al0.05) O-2] are prepared by a scalable spray pyrolysis process. The addition of an organic additive into the spray solution is a key factor for the large production of nano-sized composite cathode powders. After post-treatment at high temperatures and a simple milling process, the composite powders prepared from a spray solution with citric acid and ethylene glycol are the size of nanometers. Mean sizes of the powders after posttreatment at 600 and 900 degrees C are 20 and 200 nm, respectively. An ICP analysis determined that the mole ratio of Li/(Ni + Mn + Co) in the powders post-treated at 900 degrees C, is 1.3. The initial charge capacities of the powders post-treated at 600, 700, 800, and 900 degrees C are 357, 341, 338, and 294 mAh g(-1). Their initial discharge capacities are 218, 233, 231, and 240 mAh g(-1). The composite powders post-treated at 900 degrees C have the highest Coulombic efficiency. The discharge capacity of the composite powders post-treated at 900 degrees C decreases from 240 to 229 mAh g(-1) by the 30th cycles, in which the capacity retention is 95.4%.
引用
收藏
页码:12370 / 12382
页数:13
相关论文
共 37 条
[1]   Thermal behavior of Li1-yNiO2 and the decomposition mechanism [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
SOLID STATE IONICS, 1998, 109 (3-4) :295-302
[2]   Improved cycling performance of nano-composite Li2Ni2(MoO4)3 as a lithium battery cathode material [J].
Begam, K. M. ;
Prabaharan, S. R. S. .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :319-322
[3]   An alternative lithium cathode material:: Synthesis, characterization, and electrochemical analysis of Li8(Ni5Co2Mn)O16 [J].
Boyle, TJ ;
Ingersoll, D ;
Rodriguez, MA ;
Tafoya, CJ ;
Doughty, DH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (05) :1683-1686
[4]   LI/LIXNIO2 AND LI/LIXCOO2 RECHARGEABLE SYSTEMS - COMPARATIVE-STUDY AND PERFORMANCE OF PRACTICAL CELLS [J].
BROUSSELY, M ;
PERTON, F ;
LABAT, J ;
STANIEWICZ, RJ ;
ROMERO, A .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :209-216
[5]   LIXNIO2, A PROMISING CATHODE FOR RECHARGEABLE LITHIUM BATTERIES [J].
BROUSSELY, M ;
PERTON, F ;
BIENSAN, P ;
BODET, JM ;
LABAT, J ;
LECERF, A ;
DELMAS, C ;
ROUGIER, A ;
PERES, JP .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :109-114
[6]   Structural and electrochemical characteristics of Co and Al co-doped lithium nickelate cathode materials for lithium-ion batteries [J].
Cao, H ;
Xia, BJ ;
Xu, NX ;
Zhang, CF .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 376 (1-2) :282-286
[7]   THERMAL-STABILITY OF LIXCOO2, LIXNIO2 AND LAMBDA-MNO2 AND CONSEQUENCES FOR THE SAFETY OF LI-ION CELLS [J].
DAHN, JR ;
FULLER, EW ;
OBROVAC, M ;
VONSACKEN, U .
SOLID STATE IONICS, 1994, 69 (3-4) :265-270
[8]   RECHARGEABLE LINIO2 CARBON CELLS [J].
DAHN, JR ;
VONSACKEN, U ;
JUZKOW, MW ;
ALJANABY, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (08) :2207-2211
[9]   An overview of the Li(Ni,M)O2 systems:: syntheses, structures and properties [J].
Delmas, C ;
Ménétrier, M ;
Croguennec, L ;
Saadoune, I ;
Rougier, A ;
Pouillerie, C ;
Prado, G ;
Grüne, M ;
Fournès, L .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :243-253
[10]   Origin of the irreversible plateau (4.5V) of Li0.182Ni0.182Co0.091Mn0.545]O2 layered material [J].
Gan, CL ;
Zhan, H ;
Hu, XH ;
Zhou, YH .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (12) :1318-1322