A limited contribution of Ca2+ current facilitation to paired-pulse facilitation of transmitter release at the rat calyx of Held

被引:50
作者
Mueller, Martin [1 ,2 ]
Felmy, Felix [3 ]
Schneggenburger, Ralf [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Synapt Mech, Brain Mind Inst, CH-1015 Lausanne, Switzerland
[2] Univ Tubingen, Grad Sch Neural & Behav Sci, D-72074 Tubingen, Germany
[3] Univ Munich, Dept Neurobiol, D-82152 Martinsried, Germany
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2008年 / 586卷 / 22期
基金
瑞士国家科学基金会;
关键词
D O I
10.1113/jphysiol.2008.155838
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent studies have suggested that transmitter release facilitation at synapses is largely mediated by presynaptic Ca2+ current facilitation, but the exact contribution of Ca2+ current facilitation has not been determined quantitatively. Here, we determine the contribution of Ca2+ current facilitation, and of an increase in the residual free Ca2+ concentration ([Ca2+](i)) in the nerve terminal, to paired-pulse facilitation of transmitter release at the calyx of Held. Under conditions of low release probability imposed by brief presynaptic voltage-clamp steps, transmitter release facilitation at short interstimulus intervals (4 ms) was 227 +/- 31% of control, Ca2+ current facilitation was 113 +/- 4% of control, and the peak residual [Ca2+](i) was 252 +/- 18 nm over baseline. By inferring the 'local' [Ca2+](i) transients that drive transmitter release during these voltage-clamp stimuli with the help of a kinetic release model, we estimate that Ca2+ current facilitation contributes to similar to 40% to paired-pulse facilitation of transmitter release. The remaining component of facilitation strongly depends on the build-up, and on the decay of the residual free [Ca2+](i), but cannot be explained by linear summation of the residual free [Ca2+](i), and the back-calculated 'local' [Ca2+](i) signal, which only accounts for similar to 10% of the total release facilitation. Further voltage-clamp experiments designed to compensate for Ca2+ current facilitation demonstrated that about half of the observed transmitter release facilitation remains in the absence of Ca2+ current facilitation. Our results indicate that paired-pulse facilitation of transmitter release at the calyx of Held is driven by at least two distinct mechanisms: Ca2+ current facilitation, and a mechanism independent of Ca2+ current facilitation that closely tracks the time course of residual free [Ca2+](i).
引用
收藏
页码:5503 / 5520
页数:18
相关论文
共 53 条
[1]   Synaptic computation [J].
Abbott, LF ;
Regehr, WG .
NATURE, 2004, 431 (7010) :796-803
[2]  
Atluri PP, 1996, J NEUROSCI, V16, P5661
[3]   Single-domain/bound calcium hypothesis of transmitter release and facilitation [J].
Bertram, R ;
Sherman, A ;
Stanley, EF .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 75 (05) :1919-1931
[4]  
Bischofberger J, 2002, J NEUROSCI, V22, P10593
[5]   Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals [J].
Blatow, M ;
Caputi, A ;
Burnashev, N ;
Monyer, H ;
Rozov, A .
NEURON, 2003, 38 (01) :79-88
[6]   Calcium sensitivity of glutamate release in a calyx-type terminal [J].
Bollmann, JH ;
Sakmann, B ;
Gerard, J ;
Borst, G .
SCIENCE, 2000, 289 (5481) :953-957
[7]   Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat [J].
Borst, JGG ;
Helmchen, F ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 489 (03) :825-840
[8]   Facilitation of presynaptic calcium currents in the rat brainstem [J].
Borst, JGG ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 513 (01) :149-155
[9]   Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem [J].
Borst, JGG ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 506 (01) :143-157
[10]   ROLE OF PRE-SYNAPTIC CALCIUM-IONS AND CHANNELS IN SYNAPTIC FACILITATION AND DEPRESSION AT THE SQUID GIANT SYNAPSE [J].
CHARLTON, MP ;
SMITH, SJ ;
ZUCKER, RS .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 323 (FEB) :173-193