Room-temperature plasticity in diamond

被引:17
|
作者
Bu YeQiang [1 ,2 ]
Wang Peng [3 ]
Nie AnMin [4 ]
Wang HongTao [1 ,2 ]
机构
[1] Zhejiang Univ, Ctr Xmech, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Inst Appl Mech, Hangzhou 310027, Peoples R China
[3] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[4] Yanshan Univ, Ctr High Pressure Sci, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
diamond; plasticity; dislocation; in-situ transmission electron microscopy; STRENGTH; TIP;
D O I
10.1007/s11431-020-1590-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In spite of extremely high strength and hardness, the property of brittleness is tightly linked to diamond. In the deformation of diamond at room temperature, the plasticity of the diamond is normally considered hard to occur because of the domination of catastrophic brittle fracture. Herein, we employedin-situtransmission electron microscopy to reveal the diamond room-temperature plastic behavior, and compared it with a recent report (Adv. Mater. 2020, 1906458) on transformation-induced room-temperature plasticity of diamond nanopillars. Our presentin-situuniaxial compression tests in sub-micron-sized diamond pillars indicate that the plasticity in diamond is carried out by dislocations slipping instead of phase transformation and the initiation of plasticity highly depends on the stress state. On the other hand, we noted that a high proportion of amorphous surface layer in the diamond pillars with a diameter of less than 20 nm may be a significant factor leading to the plasticity.
引用
收藏
页码:32 / 36
页数:5
相关论文
共 50 条
  • [31] Size-dependent plasticity in titanium carbide mediated by dislocation at room temperature
    Huang, Junquan
    Chen, Yujun
    Su, Zhengping
    Ma, Mengdong
    Bu, Yeqiang
    Jin, Tianye
    Tong, Ke
    Xu, Bo
    Wang, Hongtao
    Nie, Anmin
    Tian, Yongjun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1018
  • [32] Near-surface plastic deformation in polycrystalline SrTiO3 via room-temperature cyclic Brinell indentation
    Okafor, Chukwudalu
    Ding, Kuan
    Preuss, Oliver
    Khansur, Neamul
    Rheinheimer, Wolfgang
    Fang, Xufei
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (10) : 6715 - 6728
  • [33] Room temperature photovoltaic charging in photoemission from diamond
    Bandis, C
    Pate, BB
    SURFACE SCIENCE, 1996, 345 (1-2) : L23 - L27
  • [34] Direct Bonding of GaN to Diamond Substrate at Room Temperature
    Suga, Tadatomo
    Mu, Fengwen
    2020 IEEE 70TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2020), 2020, : 1328 - 1331
  • [35] Pressure-Induced Metallization of Diamond at Room Temperature
    Sichkar, S. M.
    JOURNAL OF SUPERHARD MATERIALS, 2020, 42 (03) : 177 - 189
  • [36] Room-temperature bonding of single-crystal diamond and Si using Au/Au atomic diffusion bonding in atmospheric air
    Matsumae, Takashi
    Kurashima, Yuichi
    Umezawa, Hitoshi
    Mokuno, Yoshiaki
    Takagi, Hideki
    MICROELECTRONIC ENGINEERING, 2018, 195 : 68 - 73
  • [37] Pressure-Induced Metallization of Diamond at Room Temperature
    S. M. Sichkar
    Journal of Superhard Materials, 2020, 42 : 177 - 189
  • [38] Room-temperature plastic inorganic semiconductors for flexible and deformable electronics
    Chen, Heyang
    Wei, Tian-Ran
    Zhao, Kunpeng
    Qiu, Pengfei
    Chen, Lidong
    He, Jian
    Shi, Xun
    INFOMAT, 2021, 3 (01) : 22 - 35
  • [39] A study on the room-temperature magnetoplastic effect of silicon and its mechanism
    Zhang, Xu
    Zhao, Qian
    Wang, Zheyao
    Cai, Zhipeng
    Pan, Jiluan
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (43)
  • [40] Room-Temperature Quantum Bit Memory Exceeding One Second
    Maurer, P. C.
    Kucsko, G.
    Latta, C.
    Jiang, L.
    Yao, N. Y.
    Bennett, S. D.
    Pastawski, F.
    Hunger, D.
    Chisholm, N.
    Markham, M.
    Twitchen, D. J.
    Cirac, J. I.
    Lukin, M. D.
    SCIENCE, 2012, 336 (6086) : 1283 - 1286