Seeking efficient data augmentation schemes via conditional and marginal augmentation

被引:114
作者
Meng, XL [1 ]
Van Dyk, DA
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
auxiliary variable; EM algorithm; incomplete data; Markov chain Monte Carlo; PXEM algorithm; rate of convergence; working parameter;
D O I
10.1093/biomet/86.2.301
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Data augmentation, sometimes known as the method of auxiliary variables, is a powerful tool for constructing optimisation and simulation algorithms. In the context of optimisation, Meng & van Dyk (1997, 1998) reported several successes of the 'working parameter' approach for constructing efficient data-augmentation schemes for fast and simple EM-type algorithms. This paper investigates the use of working parameters in the context of Markov chain Monte Carlo, in particular in the context of Tanner & Wong's (1987) data augmentation algorithm, via a theoretical study of two working-parameter approaches, the conditional augmentation approach and the marginal augmentation approach. Posterior sampling under the univariate t model is used as a running example, which particularly illustrates how the marginal augmentation approach obtains a fast-mixing positive recurrent Markov chain by first constructing a nonpositive recurrent Markov chain in a larger space.
引用
收藏
页码:301 / 320
页数:20
相关论文
共 30 条
[11]   ANNEALING MARKOV-CHAIN MONTE-CARLO WITH APPLICATIONS TO ANCESTRAL INFERENCE [J].
GEYER, CJ ;
THOMPSON, EA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (431) :909-920
[12]  
Gilks W.R., 1995, MARKOV CHAIN MONTE C, DOI DOI 10.1201/B14835
[13]  
GILKS WR, 1997, J ROY STAT SOC B, V59, P543
[14]   Reversible jump Markov chain Monte Carlo computation and Bayesian model determination [J].
Green, PJ .
BIOMETRIKA, 1995, 82 (04) :711-732
[15]  
GREEN PJ, 1997, J ROYAL STAT SOC B, V59, P554
[16]   Parameter expansion to accelerate EM: The PX-EM algorithm [J].
Liu, CH ;
Rubin, DB ;
Wu, YN .
BIOMETRIKA, 1998, 85 (04) :755-770
[17]  
LIU JS, 1994, COMPUTING SCIENCE AND STATISTICS, VOL 26, P490
[18]   COVARIANCE STRUCTURE OF THE GIBBS SAMPLER WITH APPLICATIONS TO THE COMPARISONS OF ESTIMATORS AND AUGMENTATION SCHEMES [J].
LIU, JS ;
WONG, WH ;
KONG, A .
BIOMETRIKA, 1994, 81 (01) :27-40
[20]   SIMULATED TEMPERING - A NEW MONTE-CARLO SCHEME [J].
MARINARI, E ;
PARISI, G .
EUROPHYSICS LETTERS, 1992, 19 (06) :451-458