Enabling Controlling Complex Networks with Local Topological Information

被引:26
作者
Li, Guoqi [1 ,4 ]
Deng, Lei [1 ,5 ]
Xiao, Gaoxi [2 ]
Tang, Pei [1 ,4 ]
Wen, Changyun [2 ]
Hu, Wuhua [2 ]
Pei, Jing [1 ,4 ]
Shi, Luping [1 ,4 ]
Stanley, H. Eugene [3 ]
机构
[1] Tsinghua Univ, Dept Precis Instrument, Ctr Brain Inspired Comp Res, Beijing, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[3] Boston Univ, Dept Phys, Ctr Polymer Studies, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Tsinghua Univ, Beijing Innovat Ctr Future Chip, Beijing, Peoples R China
[5] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会; 北京市自然科学基金; 新加坡国家研究基金会;
关键词
D O I
10.1038/s41598-018-22655-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Complex networks characterize the nature of internal/external interactions in real-world systems including social, economic, biological, ecological, and technological networks. Two issues keep as obstacles to fulfilling control of large-scale networks: structural controllability which describes the ability to guide a dynamical system from any initial state to any desired final state in finite time, with a suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost for driving the network to a predefined state with a given number of control inputs. For large complex networks without global information of network topology, both problems remain essentially open. Here we combine graph theory and control theory for tackling the two problems in one go, using only local network topology information. For the structural controllability problem, a distributed local-game matching method is proposed, where every node plays a simple Bayesian game with local information and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. Starring from any structural controllability solution, a minimizing longest control path method can efficiently reach a good solution for the optimal control in large networks. Our results provide solutions for distributed complex network control and demonstrate a way to link the structural controllability and optimal control together.
引用
收藏
页数:10
相关论文
共 35 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]  
[Anonymous], 1963, Journal of the Society for Industrial and Applied Mathematics, Series A: Control, DOI DOI 10.1137/0301010
[3]   Scale-free networks [J].
Barabási, AL ;
Bonabeau, E .
SCIENTIFIC AMERICAN, 2003, 288 (05) :60-69
[4]  
Chen Y. Z., 2015, ARXIV150903196
[5]   Energy scaling and reduction in controlling complex networks [J].
Chen, Yu-Zhong ;
Wang, Le-Zhi ;
Wang, Wen-Xu ;
Lai, Ying-Cheng .
ROYAL SOCIETY OPEN SCIENCE, 2016, 3 (04)
[6]   Realistic control of network dynamics [J].
Cornelius, Sean P. ;
Kath, William L. ;
Motter, Adilson E. .
NATURE COMMUNICATIONS, 2013, 4
[7]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[8]  
ERDOS P, 1960, B INT STATIST INST, V38, P343
[9]   Controllability of structural brain networks [J].
Gu, Shi ;
Pasqualetti, Fabio ;
Cieslak, Matthew ;
Telesford, Qawi K. ;
Yu, Alfred B. ;
Kahn, Ari E. ;
Medaglia, John D. ;
Vettel, Jean M. ;
Miller, Michael B. ;
Grafton, Scott T. ;
Bassett, Danielle S. .
NATURE COMMUNICATIONS, 2015, 6
[10]  
Harsanyi JC, 1967, Management science, V14, P159, DOI [DOI 10.1287/MNSC.14.3.159, 10.1287/mnsc.14.3.159]