Edge-colorings avoiding rainbow and monochromatic subgraphs

被引:17
作者
Axenovich, Maria [1 ]
Iverson, Perry [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
mixed Ramsey; edge-coloring; monochromatic; totally multicolored;
D O I
10.1016/j.disc.2007.08.092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two graphs G and H, let the mixed anti-Ramsey numbers, max R(n: G, H), (min R(n: G, H)) be the maximum (minimum) number of colors used in an edge-coloring of a complete graph with it vertices having no monochromatic subgraph isomorphic to G and no totally multicolored (rainbow) subgraph isomorphic to H. These two numbers generalize the classical anti-Ramsey and Ramsey numbers, respectively. We show that max R(n: G. H), in most cases, can be expressed in terms of vertex arboricity of H and it does not depend on the graph G. In particular, we determine max R(n; G, H) asymptotically for all graphs G and H, where G is not a star and H has vertex arboricity at least 3. In studying min R(n: G, H) we primarily concentrate on the case when G = H = K-3. We find min R(n K-3, K-3) exactly, as well as all extremal colorings. Among others. by investigating min R(n: K-t. K-3), we show that if an edge-coloring of K-n in k colors has no monochromatic K-t and no rainbow triangle, then n <= 2(kt2). (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:4710 / 4723
页数:14
相关论文
共 26 条
[21]   ON ERDOS-RADO NUMBERS [J].
LEFMANN, H ;
RODEL, V .
COMBINATORICA, 1995, 15 (01) :85-104
[22]   An anti-Ramsey theorem on cycles [J].
Montellano-Ballesteros, JJ ;
Neumann-Lara, V .
GRAPHS AND COMBINATORICS, 2005, 21 (03) :343-354
[23]   An anti-Ramsey theorem [J].
Montellano-Ballesteros, JJ ;
Neumann-Lara, V .
COMBINATORICA, 2002, 22 (03) :445-449
[24]   An explicit construction for a Ramsey problem [J].
Mubayi, D .
COMBINATORICA, 2004, 24 (02) :313-324
[25]  
Turan P., 1941, Mat. Fiz. Lapok, V48, P436
[26]  
West D. B., 2002, Introduction to Graph Theory