Edge-colorings avoiding rainbow and monochromatic subgraphs

被引:17
作者
Axenovich, Maria [1 ]
Iverson, Perry [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
mixed Ramsey; edge-coloring; monochromatic; totally multicolored;
D O I
10.1016/j.disc.2007.08.092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two graphs G and H, let the mixed anti-Ramsey numbers, max R(n: G, H), (min R(n: G, H)) be the maximum (minimum) number of colors used in an edge-coloring of a complete graph with it vertices having no monochromatic subgraph isomorphic to G and no totally multicolored (rainbow) subgraph isomorphic to H. These two numbers generalize the classical anti-Ramsey and Ramsey numbers, respectively. We show that max R(n: G. H), in most cases, can be expressed in terms of vertex arboricity of H and it does not depend on the graph G. In particular, we determine max R(n; G, H) asymptotically for all graphs G and H, where G is not a star and H has vertex arboricity at least 3. In studying min R(n: G, H) we primarily concentrate on the case when G = H = K-3. We find min R(n K-3, K-3) exactly, as well as all extremal colorings. Among others. by investigating min R(n: K-t. K-3), we show that if an edge-coloring of K-n in k colors has no monochromatic K-t and no rainbow triangle, then n <= 2(kt2). (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:4710 / 4723
页数:14
相关论文
共 26 条
[1]  
AHLSWEDE R, 1992, J COMBIN INFORM SYST, V17, P203
[2]  
Alon N., 2004, The probabilistic method
[3]   Canonical pattern Ramsey numbers [J].
Axenovich, M ;
Jamison, RE .
GRAPHS AND COMBINATORICS, 2005, 21 (02) :145-160
[4]   On generalized Ramsey theory:: The bipartite case [J].
Axenovich, M ;
Füredi, Z ;
Mubayi, D .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 79 (01) :66-86
[5]   On a generalized anti-Ramsey problem [J].
Axenovich, M ;
Kündgen, A .
COMBINATORICA, 2001, 21 (03) :335-349
[6]   AN ANTI-RAMSEY THEOREM [J].
BABAI, L .
GRAPHS AND COMBINATORICS, 1985, 1 (01) :23-28
[7]  
Bollobas B., 1978, EXTREMAL GRAPH THEOR
[8]   A SURVEY OF BOUNDS FOR CLASSICAL RAMSEY NUMBERS [J].
CHUNG, FRK ;
GRINSTEAD, CM .
JOURNAL OF GRAPH THEORY, 1983, 7 (01) :25-37
[9]  
CHUNG FRK, 1993, COMBINATORICA, V3, P315
[10]  
DEUBER WA, 1993, CANONIZATION COMBINA, V1, P107