Saddle Point of Orbital Pursuit-Evasion Game Under J2-Perturbed Dynamics

被引:38
作者
Li, Zhen-yu [1 ]
Zhu, Hai [1 ]
Yang, Zhen [1 ]
Luo, Ya-zhong [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamics;
D O I
10.2514/1.G004459
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this study, an indirect method, named the combined shooting and collocation method (CSCM), is proposed to solve the accurate saddle point of the three-dimensional orbital pursuit–evasion (PE) game under J2-perturbed dynamics. With the analytical conditions for optimality used for both players, the CSCM can compute an accurate saddle-point solution. By decomposing the original two-point boundary-value problem (TPBVP) P into two layers and progressively handling the constraints, the developed CSCM can robustly find a saddle-point solution for a variety of orbital PE scenarios, even under J2-perturbed dynamics. The computation effort of the proposed method is below 50 iterations in practice.
引用
收藏
页码:1733 / 1739
页数:7
相关论文
共 25 条
[1]  
Neto AA, 2009, LAT-AM SYMP DEP COMP, P1, DOI 10.1109/LADC.2009.23
[2]  
Basar T., 1999, DYNAMIC NONCOOPERATI, P17
[3]   COMPLEX DIFFERENTIAL-GAMES OF PURSUIT-EVASION TYPE WITH STATE CONSTRAINTS .1. NECESSARY CONDITIONS FOR OPTIMAL OPEN-LOOP STRATEGIES [J].
BREITNER, MH ;
PESCH, HJ ;
GRIMM, W .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 78 (03) :419-441
[4]  
Bryson A., 1975, APPL OPTIMAL CONTROL, P65
[5]   Solution of a Pursuit-Evasion Game Using a Near-Optimal Strategy [J].
Carr, Ryan W. ;
Cobb, Richard G. ;
Pachter, Meir ;
Pierce, Scott .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2018, 41 (04) :841-850
[6]   A co-evolutionary method for pursuit-evasion games with non-zero lethal radii [J].
Choi, HL ;
Ryu, H ;
Tahk, MJ ;
Bang, H .
ENGINEERING OPTIMIZATION, 2004, 36 (01) :19-36
[7]  
Colasurdo G., 2016, Space Engineering, V114, P87, DOI [DOI 10.1007/978-3-319-41508-63, DOI 10.1007/978-3-319-41508-6]
[8]  
Conn A. R., 2000, TRUST REGION METHODS, DOI DOI 10.1137/1.9780898719857
[9]   Sensitivity Methods Applied to Orbital Pursuit Evasion [J].
Hafer, William T. ;
Reed, Helen L. ;
Turner, James D. ;
Khanh Pham .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2015, 38 (06) :1118-U217
[10]  
Isaacs R., 1965, Differential Games, P278