Richardson extrapolation of iterated discrete Galerkin solution for two-dimensional Fredholm integral equations

被引:70
作者
Han, GQ [1 ]
Wang, RF
机构
[1] S China Univ Technol, Dept Comp Sci, Guangzhou, Peoples R China
[2] South China Agr Univ, Coll Sci, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Fredholm integral equations; discrete Galerkin method; asymptotic expansion; Richardson extrapolation;
D O I
10.1016/S0377-0427(01)00390-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the numerical solution of two-dimensional Fredholm integral equation by discrete Galerkin and iterated discrete Galerkin method. We are able to derive an asymptotic error expansion of the iterated discrete Galerkin solution. This expansion covers arbitrarily high powers of the discretization parameters if the solution of the integral equation is smooth. The expansion gives rise to Richardson-type extrapolation schemes which rapidly improve the original rate of the convergence. Numerical experiments confirm our theoretical results. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:49 / 63
页数:15
相关论文
共 14 条
[1]  
Anselone P. M., 1971, Collectively compact operator approximation theory and applications to integral equations
[2]  
ATKINSON E. K., 1997, NUMERICAL SOLUTION I
[3]  
ATKINSON K, 1987, MATH COMPUT, V48, P595, DOI 10.1090/S0025-5718-1987-0878693-6
[4]  
Atkinson K., 1992, J. Int. Eqns. Appl., V4, P15
[5]  
ATKINSON KENDALL, 1988, J. Integral Equations Appl., P17
[6]  
BAKER C, 1977, NUMERICAL TREATMENT
[7]   The Petrov-Galerkin and iterated Petrov-Galerkin methods for second-kind integral equations [J].
Chen, ZY ;
Xu, YS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) :406-434
[8]  
Delves L. M., 1985, COMPUTATIONAL METHOD
[9]  
Hackbusch W., 1995, International series of numerical mathematics
[10]   ASYMPTOTIC ERROR EXPANSION FOR THE NYSTROM METHOD FOR NONLINEAR FREDHOLM INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
HAN, GQ .
BIT, 1994, 34 (02) :254-261