Gradient estimates for a simple nonlinear heat equation on manifolds

被引:4
作者
Ma, Li [1 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
Positive solution; nonlinear heat equation; gradient estimate; 53C21; 35J60; RIEMANNIAN-MANIFOLDS; PARABOLIC EQUATION; RICCI FLOW;
D O I
10.1080/00036811.2015.1120290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the gradient estimate for positive solutions to the following nonlinear heat equation problem u(t) - Delta u = au log u + Vu, u > 0 on the compact Riemannian manifold (M, g) of dimension n and with non-negative Ricci curvature. Here a <= 0 is a constant, V is a smooth function on M with -Delta V <= A for some positive constant A. This heat equation is a basic evolution equation and it can be considered as the negative gradient heat flow to W-functional (introduced by G.Perelman), which is the Log-Sobolev inequalities on the Riemannian manifold and V corresponds to the scalar curvature.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 13 条
[1]   The conjugate heat equation and Ancient solutions of the Ricci flow [J].
Cao, Xiaodong ;
Zhang, Qi S. .
ADVANCES IN MATHEMATICS, 2011, 228 (05) :2891-2919
[2]   DIFFERENTIAL HARNACK ESTIMATES FOR TIME-DEPENDENT HEAT EQUATIONS WITH POTENTIALS [J].
Cao, Xiaodong ;
Hamilton, Richard S. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) :989-1000
[3]   Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds [J].
Chen, Li ;
Chen, Wenyi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (04) :397-404
[4]  
Chow B., 2010, MATH SURVEYS MONOGRA
[5]   Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds [J].
Huang, Guangyue ;
Ma, Bingqing .
ARCHIV DER MATHEMATIK, 2010, 94 (03) :265-275
[6]   A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow [J].
Kuang, Shilong ;
Zhang, Qi S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) :1008-1023
[7]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[8]   Gradient estimate for the degenerate parabolic equation ut=ΔF(u)+H(u) on manifolds [J].
Ma, Li ;
Zhao, Lin ;
Song, Xianfa .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (05) :1157-1177
[9]   Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds [J].
Ma, Li .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (01) :374-382
[10]   The entropy formula for linear heat equation (vol 14, pg 87, 2004) [J].
Ni, L .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (02) :369-374