A stabilized Lagrange multiplier method for the enriched finite-element approximation of Tresca contact problems of cracked elastic bodies

被引:5
作者
Amdouni, S. [1 ,2 ]
Moakher, M. [1 ]
Renard, Y. [3 ]
机构
[1] Univ Tunis El Manor, Ecole Natl Ingn Tunis, Lab LAMSIN, Tunis 1002, Tunisia
[2] INSA Lyon, ICJ UMR5208, F-69621 Villeurbanne, France
[3] Univ Lyon, CNRS, INSA Lyon, ICJ UMR5208,LaMCoS UMR5259, F-69621 Villeurbanne, France
关键词
X-FEM; Tresca friction; Mixed formulation; A priori error estimates; Local projection stabilization method; SIGNORINI PROBLEM; COULOMB-FRICTION; ERROR ANALYSIS; BOUNDARY; DOMAIN; GROWTH;
D O I
10.1016/j.cma.2013.11.022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we propose a local projection stabilized Lagrange multiplier method in order to approximate the two-dimensional linear elastostatics unilateral contact problem with Tresca friction in the framework of the eXtended Finite Element Method X-FEM. This last method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. The advantage of the used stabilization technique is to affect only the equation on multipliers and thus to be equation independent. We study the existence, uniqueness and a priori error estimate of three hybrid discrete formulations. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:178 / 200
页数:23
相关论文
共 32 条
[1]  
Adams A., 2003, Sobolev Spaces, V140
[2]   A MIXED FORMULATION FOR FRICTIONAL CONTACT PROBLEMS PRONE TO NEWTON LIKE SOLUTION METHODS [J].
ALART, P ;
CURNIER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 92 (03) :353-375
[3]   A local projection stabilization of fictitious domain method for elliptic boundary value problems [J].
Amdouni, S. ;
Moakher, M. ;
Renard, Y. .
APPLIED NUMERICAL MATHEMATICS, 2014, 76 :60-75
[4]  
Amdouni S., 2012, EUR J COMPUT MECH RE, P1
[5]   A STABILIZED LAGRANGE MULTIPLIER METHOD FOR THE ENRICHED FINITE-ELEMENT APPROXIMATION OF CONTACT PROBLEMS OF CRACKED ELASTIC BODIES [J].
Amdouni, Saber ;
Hild, Patrick ;
Lleras, Vanessa ;
Moakher, Maher ;
Renard, Yves .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04) :813-839
[6]   Mixed finite element methods for the Signorini problem with friction [J].
Baillet, Laurent ;
Sassi, Taoufik .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (06) :1489-1508
[7]   BOUNDARY LAGRANGE MULTIPLIERS IN FINITE-ELEMENT METHODS - ERROR ANALYSIS IN NATURAL NORMS [J].
BARBOSA, HJC ;
HUGHES, TJR .
NUMERISCHE MATHEMATIK, 1992, 62 (01) :1-15
[8]   THE FINITE-ELEMENT METHOD WITH LAGRANGE MULTIPLIERS ON THE BOUNDARY - CIRCUMVENTING THE BABUSKA-BREZZI CONDITION [J].
BARBOSA, HJC ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 85 (01) :109-128
[9]   A local projection stabilized method for fictitious domains [J].
Barrenechea, Gabriel R. ;
Chouly, Franz .
APPLIED MATHEMATICS LETTERS, 2012, 25 (12) :2071-2076
[10]   Hybrid finite element methods for the Signorini problem [J].
Ben Belgacem, F ;
Renard, Y .
MATHEMATICS OF COMPUTATION, 2003, 72 (243) :1117-1145