All-electrical manipulation of silicon spin qubits with tunable spin-valley mixing

被引:30
作者
Bourdet, Leo [1 ]
Niquet, Yann-Michel [1 ]
机构
[1] Univ Grenoble Alpes, CEA, INAC MEM, L Sim, F-38000 Grenoble, France
关键词
QUANTUM; ROUGHNESS; RESONANCE; NOISE;
D O I
10.1103/PhysRevB.97.155433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that the mixing between spin and valley degrees of freedom in a silicon quantum bit (qubit) can be controlled by a static electric field acting on the valley splitting Delta. Thanks to spin-orbit coupling, the qubit can be continuously switched between a spin mode (where the quantum information is encoded into the spin) and a valley mode (where the quantum information is encoded into the valley). In the spin mode, the qubit is more robust with respect to inelastic relaxation and decoherence but is hardly addressable electrically. It can, however, be brought into the valley mode for electrical manipulation, then back to the spin mode. This opens new possibilities for the development of robust and scalable, electrically addressable spin qubits on silicon. We illustrate this with tight-binding simulations on a so-called "corner dot" in a silicon-on-insulator device for which the confinement and valley splitting can be independently tailored by front and back gates.
引用
收藏
页数:9
相关论文
共 43 条
[11]   Electron spin resonance and spin-valley physics in a silicon double quantum dot [J].
Hao, Xiaojie ;
Ruskov, Rusko ;
Xiao, Ming ;
Tahan, Charles ;
Jiang, HongWen .
NATURE COMMUNICATIONS, 2014, 5
[12]   Spin relaxation in a Si quantum dot due to spin-valley mixing [J].
Huang, Peihao ;
Hu, Xuedong .
PHYSICAL REVIEW B, 2014, 90 (23)
[13]   Electrically driven spin qubit based on valley mixing [J].
Huang, Wister ;
Veldhorst, Menno ;
Zimmerman, Neil M. ;
Dzurak, Andrew S. ;
Culcer, Dimitrie .
PHYSICAL REVIEW B, 2017, 95 (07)
[14]  
Kawakami E, 2014, NAT NANOTECHNOL, V9, P666, DOI [10.1038/nnano.2014.153, 10.1038/NNANO.2014.153]
[15]   Full Three-Dimensional Quantum Transport Simulation of Atomistic Interface Roughness in Silicon Nanowire FETs [J].
Kim, SungGeun ;
Luisier, Mathieu ;
Paul, Abhijeet ;
Boykin, Timothy B. ;
Klimeck, Gerhard .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (05) :1371-1380
[16]   Circuit QED with hole-spin qubits in Ge/Si nanowire quantum dots [J].
Kloeffel, Christoph ;
Trif, Mircea ;
Stano, Peter ;
Loss, Daniel .
PHYSICAL REVIEW B, 2013, 88 (24)
[17]   Electrically controlling single-spin qubits in a continuous microwave field [J].
Laucht, Arne ;
Muhonen, Juha T. ;
Mohiyaddin, Fahd A. ;
Kalra, Rachpon ;
Dehollain, Juan P. ;
Freer, Solomon ;
Hudson, Fay E. ;
Veldhorst, Menno ;
Rahman, Rajib ;
Klimeck, Gerhard ;
Itoh, Kohei M. ;
Jamieson, David N. ;
McCallum, Jeffrey C. ;
Dzurak, Andrew S. ;
Morello, Andrea .
SCIENCE ADVANCES, 2015, 1 (03)
[18]   Quantum computation with quantum dots [J].
Loss, D ;
DiVincenzo, DP .
PHYSICAL REVIEW A, 1998, 57 (01) :120-126
[19]   A CMOS silicon spin qubit [J].
Maurand, R. ;
Jehl, X. ;
Kotekar-Patil, D. ;
Corna, A. ;
Bohuslavskyi, H. ;
Lavieville, R. ;
Hutin, L. ;
Barraud, S. ;
Vinet, M. ;
Sanquer, M. ;
De Franceschi, S. .
NATURE COMMUNICATIONS, 2016, 7
[20]   High-Resolution Valley Spectroscopy of Si Quantum Dots [J].
Mi, X. ;
Peterfalvi, Csaba G. ;
Burkard, Guido ;
Petta, J. R. .
PHYSICAL REVIEW LETTERS, 2017, 119 (17)