A maximum power point tracking algorithm for photovoltaic applications

被引:2
|
作者
Nelatury, Sudarshan R. [1 ]
Gray, Robert [1 ]
机构
[1] Penn State Errie, Sch Engn, Dept Elect & Comp Engn, Erie, PA 16563 USA
关键词
Photovoltaics; Maximum power point; Tracking; Constrained optimization;
D O I
10.1117/12.2016257
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The voltage and current characteristic of a photovoltaic (PV) cell is highly nonlinear and operating a PV cell for maximum power transfer has been a challenge for a long time. Several techniques have been proposed to estimate and track the maximum power point (MPP) in order to improve the overall efficiency of a PV panel. A strategic use of the mean value theorem permits obtaining an analytical expression for a point that lies in a close neighborhood of the true MPP. But hitherto, an exact solution in closed form for the MPP is not published. This problem can be formulated analytically as a constrained optimization, which can be solved using the Lagrange method. This method results in a system of simultaneous nonlinear equations. Solving them directly is quite difficult. However, we can employ are cursive algorithm to yield a reasonably good solution. In graphical terms, suppose the voltage current characteristic and the constant power contours are plotted on the same voltage current plane, the point of tangency between the device characteristic and the constant power contours is the sought for MPP. It is subject to change with the incident irradiation and temperature and hence the algorithm that attempts to maintain the MPP should be adaptive in nature and is supposed to have fast convergence and the least misadjustment. There are two parts in its implementation. First, one needs to estimate the MPP. The second task is to have a DC-DC converter to match the given load to the MPP thus obtained. Availability of power electronics circuits made it possible to design efficient converters. In this paper although we do not show the results from a real circuit, we use MATLAB to obtain the MPP and a buck-boost converter to match the load. Undervarying conditions of load resistance and irradiance we demonstrate MPP tracking in case of a commercially available solar panel MSX-60. The power electronics circuit is simulated by PSIM software.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Analysis of Perturb and Observe Maximum Power Point Tracking Algorithm for Photovoltaic Applications
    Tan, Chee Wei
    Green, Tim C.
    Hernandez-Aramburo, Carlos A.
    2008 IEEE 2ND INTERNATIONAL POWER AND ENERGY CONFERENCE: PECON, VOLS 1-3, 2008, : 237 - +
  • [2] Photovoltaic maximum power point tracking for mobile applications
    Ridge, A. N.
    Amaratunga, G. A. J.
    ELECTRONICS LETTERS, 2010, 46 (22) : 1520 - 1521
  • [3] Adaptive Maximum Power Point Tracking Algorithm for Photovoltaic Power Systems
    Ahn, Chang Wook
    Choi, Ju Yeop
    Lee, Dong-Ha
    An, Jinung
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2010, E93B (05) : 1334 - 1337
  • [4] A New Maximum Power Point Tracking Algorithm for the Photovoltaic Power System
    Binh Nam Nguyen
    Van Tan Nguyen
    Thi Bich Thanh Truong
    Van Kien Pham
    Duong Hung Hoang
    Hong Viet Phuong Nguyen
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2019, : 159 - 163
  • [5] A novel Maximum Power Point Tracking algorithm for photovoltaic systems
    Zaidi, Asma
    Dahech, Karim
    Damak, Tarek
    2016 17TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA'2016), 2016, : 588 - 593
  • [6] Fuzzy Maximum Power Point Tracking Algorithm for Photovoltaic System
    Aherkar, Arjun
    Deshpande, Amruta
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 1564 - 1567
  • [7] A Novel Control Algorithm for Maximum Power Point Tracking of Photovoltaic
    He, Xinsheng
    Gao, Chunfu
    Wang, Bin
    Luo, Zhiyong
    JOURNAL OF COMPUTERS, 2012, 7 (04) : 959 - 964
  • [8] Improved Maximum Power Point Tracking Algorithm For Photovoltaic Sources
    Mummadi, Veerachary
    2008 IEEE INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY TECHNOLOGIES (ICSET), VOLS 1 AND 2, 2008, : 301 - 305
  • [9] Modified Algorithm for Maximum Power Point Tracking in Photovoltaic Systems
    Rodkin, Nikolay S.
    Solovov, Georgy K.
    Kryukov, Konstantin, V
    2020 1ST INTERNATIONAL CONFERENCE PROBLEMS OF INFORMATICS, ELECTRONICS, AND RADIO ENGINEERING (PIERE), 2020, : 131 - 135
  • [10] Modeling of Maximum Power Point Tracking Algorithm for Photovoltaic Systems
    Banu, Ioan Viorel
    Istrate, Marcel
    PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE AND EXPOSITION ON ELECTRICAL AND POWER ENGINEERING (EPE 2012), 2012, : 953 - 957