Iterative schemes for finding all roots simultaneously of nonlinear equations

被引:10
作者
Cordero, Alicia [1 ]
Garrido, Neus [2 ]
Torregrosa, Juan R. [1 ]
Triguero-Navarro, Paula [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia, Spain
[2] Univ Int Rioja, Escuela Super Ingn & Tecnol, Logrono, Spain
关键词
Iterative methods; Nonlinear equations; Simultaneous roots; Memory schemes; Ehrlich method; Dynamical plane; SIMULTANEOUS APPROXIMATION; CONVERGENCE;
D O I
10.1016/j.aml.2022.108325
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a procedure that can be added to any iterative scheme in order to turn it into an iterative method for approximating all roots simultaneously of any nonlinear equations. By applying this procedure to any iterative method of order p, we obtain a new scheme of order of convergence 2p. Some numerical tests allow us to confirm the theoretical results and to compare the proposed schemes with other known methods for simultaneous roots of polynomial and non-polynomial functions. (C) 2022 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:7
相关论文
共 11 条
[1]   Variants of Newton's Method using fifth-order quadrature formulas [J].
Cordero, A. ;
Torregrosa, Juan R. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) :686-698
[2]  
Cordero A., MATH METHODS APPL SC
[3]   A General Optimal Iterative Scheme with Arbitrary Order of Convergence [J].
Cordero, Alicia ;
Torregrosa, Juan R. ;
Triguero-Navarro, Paula .
SYMMETRY-BASEL, 2021, 13 (05)
[4]   A MODIFIED NEWTON METHOD FOR POLYNOMIALS [J].
EHRLICH, LW .
COMMUNICATIONS OF THE ACM, 1967, 10 (02) :107-&
[5]   Computational Geometry as a Tool for Studying Root-Finding Methods [J].
Petkovic, Ivan ;
Rancic, Lidija Z. .
FILOMAT, 2019, 33 (04) :1019-1027
[6]   On an efficient simultaneous method for finding polynomial zeros [J].
Petkovic, M. S. ;
Petkovic, L. D. ;
Dzunic, J. .
APPLIED MATHEMATICS LETTERS, 2014, 28 :60-65
[7]   On the convergence of high-order Gargantini-Farmer-Loizou type iterative methods for simultaneous approximation of polynomial zeros [J].
Proinov, Petko D. ;
Vasileva, Maria T. .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 :202-214
[8]   Convergence analysis of Sakurai-Torii-Sugiura iterative method for simultaneous approximation of polynomial zeros [J].
Proinov, Petko D. ;
Ivanov, Stoil I. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 357 :56-70
[9]   On a family of Weierstrass-type root-finding methods with accelerated convergence [J].
Proinov, Petko D. ;
Vasileva, Maria T. .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 :957-968
[10]   On iterative techniques for estimating all roots of nonlinear equation and its system with application in differential equation [J].
Shams, Mudassir ;
Rafiq, Naila ;
Kausar, Nasreen ;
Agarwal, Praveen ;
Park, Choonkil ;
Mir, Nazir Ahmad .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)