On the supremum of γ-reflected processes with fractional Brownian motion as input

被引:33
作者
Hashorva, Enkelejd [1 ]
Ji, Lanpeng [1 ]
Piterbarg, Vladimir I. [2 ]
机构
[1] Univ Lausanne, UNIL Dorigny, Fac Business & Econ, CH-1015 Lausanne, Switzerland
[2] Moscow MV Lomonosov State Univ, Moscow 119234, Russia
基金
瑞士国家科学基金会; 俄罗斯基础研究基金会;
关键词
gamma-reflected process; Fractional Brownian motion; Supremum; Exact asymptotics; Ruin probability; Extremes of Gaussian random fields; MAXIMUM;
D O I
10.1016/j.spa.2013.06.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X-H(t), t >= 0} be a fractional Brownian motion with Hurst index H is an element of (0, 1] and define a gamma-reflected process W-gamma(t) = X-H(t) - ct - gamma inf(s is an element of[0,t])(X-H(s) - cs), t >= 0 with c > 0, gamma is an element of [0, 1] two given constants. In this paper we establish the exact tail asymptotic behaviour of M-gamma(T) = sup(t is an element of[0,T]) W-gamma(t) for any T is an element of (0, infinity]. Furthermore, we derive the exact tail asymptotic behaviour of the supremum of certain non-homogeneous mean-zero Gaussian random fields. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:4111 / 4127
页数:17
相关论文
共 23 条
[1]  
Adler R.J, 2007, Springer Monographs in Mathematics
[2]  
Albrecher H., 2013, METHODOLOGY IN PRESS
[3]  
[Anonymous], 2007, Large deviations for Gaussian queues
[4]  
Asmussen S., 2010, RUIN PROBABILITIES, V14
[5]   CONDITIONAL LIMIT THEOREMS FOR REGULATED FRACTIONAL BROWNIAN MOTION [J].
Awad, Hernan ;
Glynn, Peter .
ANNALS OF APPLIED PROBABILITY, 2009, 19 (06) :2102-2136
[6]  
Berman M.S., 1992, SOJOURNS EXTREMES ST
[7]   Open problems in Gaussian fluid queueing theory [J].
Debicki, K. ;
Mandjes, M. .
QUEUEING SYSTEMS, 2011, 68 (3-4) :267-273
[8]   Ruin probability for Gaussian integrated processes [J].
Debicki, K .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 98 (01) :151-174
[9]   Exact overflow asymptotics for queues with many Gaussian inputs [J].
Debicki, K ;
Mandjes, M .
JOURNAL OF APPLIED PROBABILITY, 2003, 40 (03) :704-720
[10]  
Debicki K., 2002, THEORY APPL, V42, P321